Find eigenvalues and eigenvectors of the matrix $\begin{pmatrix} 1 & 6 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} $
Find eigenvalues and eigenvectors of the matrix $$\begin{pmatrix} 1 & 6 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}. $$
Please show work.
Answer
(i) To find the eigenvalues we should set
\[\text{det}(A-\lambda I)=0.\]
Hence
\[\begin{vmatrix} 1-\lambda & 6 & 0 \\ 0 & 2-\lambda & 1 \\ 0 & 1 & 2-\lambda \end{vmatrix}=(1-\lambda) \begin{vmatrix} 2-\lambda & 1 \\ 1& 2-\lambda \end{vmatrix} \]
\[=(1-\lambda)((2-\lambda)(2-\lambda)-1)=(1-\lambda)(\lambda^2-4\lambda+3)\]
\[=(1-\lambda)(1-\lambda)(\lambda-3)=0\]
\[\Rightarrow \lambda_1=\lambda_2=1, \lambda_3=3.\]
(ii) Next we find the eigenvectors for $\lambda_1=\lambda_2=1$.
\[(A-I)v_1=0 \Rightarrow\]
\[\begin{pmatrix} 0 & 6 & 0 & 0 \\ 0 & 1 & 1 &0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \]
$-R_2+R_3 \rightarrow R_3$ gives
\[\begin{pmatrix} 0 & 6 & 0 & 0 \\ 0 & 1 & 1 &0 \\ 0 & 0 & 0 & 0 \end{pmatrix}. \]
Hence
\[6y=0 \text{and} y+z=0 \Rightarrow y=z=0.\]
$x$ is a free variable, and we can take $x=1$. So there is only one linearly independent eigenvector
\[v= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}. \]
(iii) We can similarly compute the eigenvalues for $\lambda_3=3.$. \[(A-I)v_3=0 \Rightarrow\] \[\begin{pmatrix} -2 & 6 & 0 & 0 \\ 0 & -1 & 1 &0 \\ 0 & 1 & -1 & 0 \end{pmatrix} \] $R_2+R_3 \rightarrow R_3$ gives \[\begin{pmatrix} -2 & 6 & 0 & 0 \\ 0 & -1 & 1 &0 \\ 0 & 0 & 0 & 0 \end{pmatrix}. \] Hence \[x=3y \text{and} y=z \Rightarrow y=z=0.\] $z$ is a free variable, and we can take $z=1$. So there is only one linearly independent eigenvector \[v_3= \begin{pmatrix} 3\\ 1 \\ 1\end{pmatrix}. \]
- answered
- 1570 views
- $12.00
Related Questions
- Questions about using matrices for finding best straight line by linear regression
- Find the eigenvalues of $\begin{pmatrix} -1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & -1 \end{pmatrix} $
- Linear algebra
- Linear Algebra - Vectors and Linear Systems
- [Linear Algebra] Proof check. Nilpotent$\Rightarrow Spec\Rightarrow$ Characteristic Polynomial $\Rightarrow$ Nilpotent
- Find where this discrete 3D spiral converges in explict terms
- Matrices Linear transformation
- Consider the matrix, calculate a basis of the null space and column space