The Span and Uniqueness of Solutions in a Parametric Matrix
Consider the matrix:
$$A = \begin{pmatrix} 2 & -1 & 4 \\ a & 0 & b \\ 1 & 2 & 7 \end{pmatrix} $$
a) Decide if the rows in A would span $\mathbb{R}^{3} $ when a = 1 and b = 3
b) Let a = 2 and b = 0. Explain how Ax = b has exactly one solution for every $b \in \mathbb{R} ^{3}$. Give a simple, short formula for the solution.
41
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- accepted
- 1064 views
- $20.00
Related Questions
- Linear Algebra - Matrices and Inverses Matrices
- How to properly write rational exponents when expressed as roots?
- Prove that $V={(𝑥_1,𝑥_2,⋯,𝑥_n) \in ℝ^n ∣ 𝑥_1+𝑥_2+...+𝑥_{𝑛−1}−2𝑥_𝑛=0}\}$ is a subspace of $\R^n$.
- Find $x$, if $\sqrt{x} + 2y^2 = 15$ and $\sqrt{4x} − 4y^2 = 6$.
- How to parameterize an equation with 3 variables
- Mathematical Model: Discrete Logistic Growth and Fish Harvesting
- Find the null space of the matrix $\begin{pmatrix} 1 & 2 & -1 \\ 3 & -3 & 1 \end{pmatrix}$
-
The given equation is x² - 2mx + 2m - 1=0
Determine m.