Taylor Polynom/Lagrange form om the remainder term.
2. For f(x) = (lnx)/x , x > 0, compute the Taylor polynomial P(x) of degree
three centered at the point x = e. Using the Lagrange form of the remainder term,
find an interval (e−δ, e+δ) in which the approximation of f by this polynomial is no worse than ε = 10^−2 ,
|f(x) − P(x)| < ε, x ∈ (e − δ, e + δ).
You may without proof use that 2 < e < 3.
44
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
649
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1203 views
- $10.00
Related Questions
- Matrix Calculus (Matrix-vector derivatives)
-
Find a general solution for the lengths of the sides of the rectangular parallelepiped with the
largest volume that can be inscribed in the following ellipsoid - Find the extrema of $f(x,y)=x$ subject to the constraint $x^2+2y^2=2$
- Integration
- Find the antiderrivative of $\int \frac{v^2-v_o^2}{2\frac{K_e\frac{q_1q_2}{r^2}}{m} } dr$
- Are my answers correct?
- Inverse function evaluation
- Finding absolute and relative extrema given an equation.