Recursive square root sequence
Let $a_1 =2\pm \sqrt{2}$ and $a_{n+1} =2\pm \sqrt{a_n}$, and let $A_n$ be the set of all such expressions $a_n$.
(a) Show that all elements of $A_n$ are real.
(b) Compute the product $$ \prod_{a\in A_n}a$$
(c) If $A_{24}$ issorted in an ascending order, what position is the the element whose signs are $$--++++++++----++++--++-+ $$
1
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 226 views
- $60.00
Related Questions
- Reverse this equation/function (2d to isometric)
- The last six digits of the number $30001^{18} $
- Existence of a Divergent Subsequence to Infinity in Unbounded Sequences
- Find the extrema of $f(x,y)=x$ subject to the constraint $x^2+2y^2=2$
- Calculus helped needed asap !!
- Vector field
- The cross sectional area of a rod has a radius that varies along its length according to the formula r = 2x. Find the total volume of the rod between x = 0 and x = 10 inches.
- Custom Solutions to Stewart Calculus, Integral