Recursive square root sequence
Let $a_1 =2\pm \sqrt{2}$ and $a_{n+1} =2\pm \sqrt{a_n}$, and let $A_n$ be the set of all such expressions $a_n$.
(a) Show that all elements of $A_n$ are real.
(b) Compute the product $$ \prod_{a\in A_n}a$$
(c) If $A_{24}$ issorted in an ascending order, what position is the the element whose signs are $$--++++++++----++++--++-+ $$
Emma
1
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 125 views
- $60.00
Related Questions
- Get area of rotated polygon knowing all coordinates and angle.
- Prove that $\int_{-\infty}^{\infty}\frac{\cos ax}{x^4+1}dx=\frac{\pi}{2}e^{-\frac{a}{\sqrt{2}}}(\cos \frac{a}{\sqrt{2}}+\sin \frac{a}{\sqrt{2}} )$
- Calculus: INFINITE SERIES
- Calculating Speed and Velocity
- Derivative question
- Algebra 1 Word Problem #3
- Convergence of $\int_{1}^{\infty} e^{\sin(x)}\cdot\frac{\sin(x)}{x^2} $
- Custom Solutions to Stewart Calculus Problems, 9th Edition