# Volume of the solid of revolution for $f(x)=\sin x$

## Answer

\[V=\int_0^{\pi}\pi \sin ^2 x dx=\pi \int_0^{\pi}\frac{1-\cos 2x}{2}dx\]

\[=\pi \left( \frac{x}{2}-\frac{\sin 2x}{4} \right) \bigg |_{x=0}^{x=\pi}=\pi (\frac{\pi}{2}-0)\]

\[=\frac{\pi^2}{2}.\]

Daniel90

434

The answer is accepted.

Join Matchmaticians Affiliate Marketing
Program to earn up to 50% commission on every question your affiliated users ask or answer.

- answered
- 1120 views
- $2.00

### Related Questions

- Inverse function evaluation
- Differentiate $f(x)=\int_{\sqrt{x}}^{\sin^2 x}\arctan (1+e^{t^2})dt$
- A rectangular garden plot is to be fenced off along the property line.
- Compute $\lim_{x \rightarrow 0} \frac{1-\arctan (\sin(x)+1)}{e^{x}-1}$
- Prove that ${n\choose 2}2^{n-2}=\sum\limits_{k=2}^{n}{n\choose k}{k\choose 2}$ for all $n\geq 2$
- Complex Variables
- Compute $\lim_{n \rightarrow \infty} \ln \frac{n!}{n^n}$
- Find the exact form (Pre-Calculus)