Differentiate $f(x)=\int_{\sqrt{x}}^{\arcsin x} \ln\theta d \theta$
Answer
You need to use the Leibniz rule:
\[(\int_{g(x)}^{h(x)}f(\theta)d\theta)'=h'(x)f(h(x))-g'(x)f(g(x)).\]
Using this formula we get
\[f'(x)=(\arcsin x)' \ln(\arcsin x)-(x^{1/2})'\ln(x^{1/2})\]
\[=\frac{1}{\sqrt{1-x^2}} \ln(\arcsin x)-\frac{1}{2}x^{-1/2}\ln (x^{1/2}).\]

4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2571 views
- $2.00
Related Questions
- Two short calculus questions - domain and limits
- Rainbow Vectors
- Equations of Motion and Partial Fractions
- Clock Problem
- The cross sectional area of a rod has a radius that varies along its length according to the formula r = 2x. Find the total volume of the rod between x = 0 and x = 10 inches.
- Beginner Question on Integral Calculus
- Double absolute value equations.
- Algebra 1 Word Problem #3