Second order directional derivative
I understand how to calculate second order directional derivative. I want to get better understanding of the formula of it.
So first order directional derivative of f(x,y) in direction of 'u' is:
$$D_uf(x,y) = \vec{\nabla}f\cdot{u}=f_x(x,y)a + f_y(x,y)b$$
So if I want to calculate second order derivative (in direction of 'u') I will have:
$$D_u(D_uf(x,y)) = \vec{\nabla}(f_x(x,y)a + f_y(x,y)b)\cdot{u} =$$
$$(f_{xx}(x,y)a + f_{xy}(x,y)b)a + (f_{yx}(x,y)a + f_{yy}(x,y)b)b$$
Or what?) I think I'm wrong here, please explain.
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
-
is $\frac{\partial}{\partial y} \left( f_x(x,y) \cdot a + f_y(x,y) \cdot b \right)$ the final state, or I can somehow calculate it?
-
Pretty much, yes. You can simplify it a bit more.
-
a \cdot \left( a \cdot \frac{\partial f_x}{\partial x} + b \cdot \frac{\partial f_y}{\partial x} \right) + b \cdot \left( a \cdot \frac{\partial f_x}{\partial y} + b \cdot \frac{\partial f_y}{\partial y} \right)
-
- answered
- 941 views
- $5.00
Related Questions
- Rose curve
- Compute $\lim _{n \rightarrow \infty} \frac{1}{n}\ln \frac{(2n)!}{n^n n!}$
- Evaluate $\int \sin x \sqrt{1+\cos x} dx$
- Solutions to Stewart Calculus 8th edition
- Evaluate $\int \frac{x^5}{\sqrt{x^2+2}}dx$
- Spot my mistake and fix it so that it matches with the correct answer. The problem is calculus based.
- Prove that $\int_{-\infty}^{\infty}\frac{\cos ax}{x^4+1}dx=\frac{\pi}{2}e^{-\frac{a}{\sqrt{2}}}(\cos \frac{a}{\sqrt{2}}+\sin \frac{a}{\sqrt{2}} )$
- What is f(x). I've been trying to understand it for so long, but I always get different answers, I feel like I'm going crazy. Please someone explain it and read my whole question carefully.