Second order directional derivative
I understand how to calculate second order directional derivative. I want to get better understanding of the formula of it.
So first order directional derivative of f(x,y) in direction of 'u' is:
$$D_uf(x,y) = \vec{\nabla}f\cdot{u}=f_x(x,y)a + f_y(x,y)b$$
So if I want to calculate second order derivative (in direction of 'u') I will have:
$$D_u(D_uf(x,y)) = \vec{\nabla}(f_x(x,y)a + f_y(x,y)b)\cdot{u} =$$
$$(f_{xx}(x,y)a + f_{xy}(x,y)b)a + (f_{yx}(x,y)a + f_{yy}(x,y)b)b$$
Or what?) I think I'm wrong here, please explain.
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
-
is $\frac{\partial}{\partial y} \left( f_x(x,y) \cdot a + f_y(x,y) \cdot b \right)$ the final state, or I can somehow calculate it?
-
Pretty much, yes. You can simplify it a bit more.
-
a \cdot \left( a \cdot \frac{\partial f_x}{\partial x} + b \cdot \frac{\partial f_y}{\partial x} \right) + b \cdot \left( a \cdot \frac{\partial f_x}{\partial y} + b \cdot \frac{\partial f_y}{\partial y} \right)
-
- answered
- 968 views
- $5.00
Related Questions
- Is $\int_1^{\infty}\frac{x+\sqrt{x}+\sin x}{x^2-x+1}dx$ convergent?
- Rewrite $\int_{\sqrt2}^{2\sqrt2} \int_{-\pi/2}^{-\pi/4} r^2cos(\theta)d\theta dr$ in cartesian coordinates (x,y)
- Differentiate $\int_{\sin x}^{\ln x} e^{\tan t}dt$
- Let $f(x,y,z)=(x^2\cos (yz), \sin (x^2y)-x, e^{y \sin z})$. Compute the derivative matrix $Df$.
- Prove that $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$, under the given conditions on $f(x)$
- calculus question
- Evaluate $\int \frac{dx}{x \sqrt{1+\ln x}}$
- Evaluate $\int ...\int_{R_n}dV_n(x_1^2 + x_2^2 + ... + x_n^2)$ , where $n$ and $R_n$ is defined in the body of this question.