Second order directional derivative
I understand how to calculate second order directional derivative. I want to get better understanding of the formula of it.
So first order directional derivative of f(x,y) in direction of 'u' is:
$$D_uf(x,y) = \vec{\nabla}f\cdot{u}=f_x(x,y)a + f_y(x,y)b$$
So if I want to calculate second order derivative (in direction of 'u') I will have:
$$D_u(D_uf(x,y)) = \vec{\nabla}(f_x(x,y)a + f_y(x,y)b)\cdot{u} =$$
$$(f_{xx}(x,y)a + f_{xy}(x,y)b)a + (f_{yx}(x,y)a + f_{yy}(x,y)b)b$$
Or what?) I think I'm wrong here, please explain.
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
-
is $\frac{\partial}{\partial y} \left( f_x(x,y) \cdot a + f_y(x,y) \cdot b \right)$ the final state, or I can somehow calculate it?
-
Pretty much, yes. You can simplify it a bit more.
-
a \cdot \left( a \cdot \frac{\partial f_x}{\partial x} + b \cdot \frac{\partial f_y}{\partial x} \right) + b \cdot \left( a \cdot \frac{\partial f_x}{\partial y} + b \cdot \frac{\partial f_y}{\partial y} \right)
-
- answered
- 1098 views
- $5.00
Related Questions
- A rectangular garden plot is to be fenced off along the property line.
- Early uni/college Calculus (one question)
- Convergence of $\sum\limits_{n=1}^{\infty}(-1)^n\frac{n+2}{n^2+n+1}$
- Integration and Accumulation of Change
- Banach fixed-point theorem and the map $Tf(x)=\int_0^x f(s)ds $ on $C[0,1]$
- Calculate the following, if it exists: $\int_{0}^{1} x^a(lnx)^mdx$ , where $a > -1$ and $m$ is a nonnegative integer.
- Find z(x, y), please help me with this calculus question
- Hs level math (problem solving) *der