Custom Solutions to Stewart Calculus, Integral
Answer
Sure, you came to the right place to get custom solutions given by experts.
For this integral we start by integrating with respect to $z$ : $$ \int _0 ^1 \int _0 ^1 \int_0 ^{2-x^2-y^2} xy e^{z}\,dz\,dy\,dx = \int _0 ^1 \int _0 ^1 xy e^{z}\,\Big]_0 ^{2-x^2-y^2}\,dy\,dx \\ = \int _0 ^1 \int _0 ^1 xy( e^{2-x^2-y^2}-1)\,dy\,dx. $$
Then we do the $y$ integral. For this let $u=2-x^2-y^2$ to get $du=-2ydy$ (remember that in the $y$ integral we treat $x$ as a constant!)
$$ \int _0 ^1 \int _0 ^1 xy( e^{2-x^2-y^2}-1)\,dy\,dx \\ \; \\ =\int _0 ^1 \int _0 ^1 \frac{-1}{2}x (e^{u}-1)\,du\,dx = \int _0 ^1 \frac{-1}{2}x (e^{u}-u)\,\Big]_0 ^1\,du\,dx \\ \; \\ =\int _0 ^1 \frac{-1}{2}x (e-2)\,dx = \frac{-(e-2)}{2}\,\frac{x^2}{2}\,\Big]_0 ^1 = \frac{-(e-2)}{4}$$
- accepted
- 798 views
- $15.00
Related Questions
- Integral of trig functions
- Let $ X = x i+ y j+z k$, and $r=||X||$. Prove that $\nabla (\frac{1}{r})=-\frac{X}{r^3}.$
- Explain partial derivatives v3
- Find the derivative of $f(x)=\int_{\ln x}^{\sin x} \cos u du$
- Early uni/college Calculus (one question)
- Find the exact form (Pre-Calculus)
- Calculate $\iint_R (x+y)^2 e^{x-y}dx dy$ on the given region
- Find the equation of the tangent line through the function f(x)=3x$e^{5x-5} $ at the point on the curve where x=1