Custom Solutions to Stewart Calculus, Integral
Answer
Sure, you came to the right place to get custom solutions given by experts.
For this integral we start by integrating with respect to $z$ : $$ \int _0 ^1 \int _0 ^1 \int_0 ^{2-x^2-y^2} xy e^{z}\,dz\,dy\,dx = \int _0 ^1 \int _0 ^1 xy e^{z}\,\Big]_0 ^{2-x^2-y^2}\,dy\,dx \\ = \int _0 ^1 \int _0 ^1 xy( e^{2-x^2-y^2}-1)\,dy\,dx. $$
Then we do the $y$ integral. For this let $u=2-x^2-y^2$ to get $du=-2ydy$ (remember that in the $y$ integral we treat $x$ as a constant!)
$$ \int _0 ^1 \int _0 ^1 xy( e^{2-x^2-y^2}-1)\,dy\,dx \\ \; \\ =\int _0 ^1 \int _0 ^1 \frac{-1}{2}x (e^{u}-1)\,du\,dx = \int _0 ^1 \frac{-1}{2}x (e^{u}-u)\,\Big]_0 ^1\,du\,dx \\ \; \\ =\int _0 ^1 \frac{-1}{2}x (e-2)\,dx = \frac{-(e-2)}{2}\,\frac{x^2}{2}\,\Big]_0 ^1 = \frac{-(e-2)}{4}$$
- accepted
- 1300 views
- $15.00
Related Questions
- Volume of the solid of revolution for $f(x)=\sin x$
- Riemann Sums for computing $\int_0^3 x^3 dx$
- Compute $\lim_{x \rightarrow 0} \frac{1-\arctan (\sin(x)+1)}{e^{x}-1}$
- Explain parameter elimination for complex curves
- Show that $\sum_{n=1}^{\infty} \frac{\sin n}{n}$ is convergent
- Differentiate $f(x)=\int_{\sqrt{x}}^{\sin^2 x}\arctan (1+e^{t^2})dt$
- Matrix Calculus (Matrix-vector derivatives)
- Let $z = f(x − y)$. Show that $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$