Custom Solutions to Stewart Calculus, Integral
Answer
Sure, you came to the right place to get custom solutions given by experts.
For this integral we start by integrating with respect to $z$ : $$ \int _0 ^1 \int _0 ^1 \int_0 ^{2-x^2-y^2} xy e^{z}\,dz\,dy\,dx = \int _0 ^1 \int _0 ^1 xy e^{z}\,\Big]_0 ^{2-x^2-y^2}\,dy\,dx \\ = \int _0 ^1 \int _0 ^1 xy( e^{2-x^2-y^2}-1)\,dy\,dx. $$
Then we do the $y$ integral. For this let $u=2-x^2-y^2$ to get $du=-2ydy$ (remember that in the $y$ integral we treat $x$ as a constant!)
$$ \int _0 ^1 \int _0 ^1 xy( e^{2-x^2-y^2}-1)\,dy\,dx \\ \; \\ =\int _0 ^1 \int _0 ^1 \frac{-1}{2}x (e^{u}-1)\,du\,dx = \int _0 ^1 \frac{-1}{2}x (e^{u}-u)\,\Big]_0 ^1\,du\,dx \\ \; \\ =\int _0 ^1 \frac{-1}{2}x (e-2)\,dx = \frac{-(e-2)}{2}\,\frac{x^2}{2}\,\Big]_0 ^1 = \frac{-(e-2)}{4}$$
- accepted
- 681 views
- $15.00
Related Questions
- What is the integral of (x^2-8)/(x+3)dx
- Answer is done but need help
- (a) Find the coordinates (x,y) which will make the rectangular area A = xy a maximum. (b) What is the value of the maximum area?
- Volume of solid of revolution
- Applications of Integration [Calculus 1 and 2]
- Please solve the attached problem from my worksheet
- Function Invertibility/Inverse & Calculus, One question. Early Uni/College level
- Improper integral