Fix any errors in my proof (beginnner)
Fix any errors in correctness, structure, etc.
Theorem. Suppose $B$ is a set and $F$ is a family of sets. If $\bigcup F \subseteq B$, then $F \subseteq \wp(B)$.
Proof. Suppose $\bigcup F \subseteq B$. Let $y$ be an arbitrary element such that $y \in F$. Let x be an arbitrary element such that $x \in y$. It follows that $x \in \bigcup F$ and that $x \in B$. Because $\forall x(x \in y \implies x \in B)$, it follows that $y \subseteq B$ and by definition of powerset $y \in \wp(B)$. Because $\forall y(y \in F \implies y \in \wp (B)$), we can conclude that $F \subseteq \wp(B)$.
361
Answer
Answers can be viewed only if
- The questioner was satisfied and accepted the answer, or
- The answer was disputed, but the judge evaluated it as 100% correct.

1.6K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to 50% commission on every question your affiliated users ask or answer.
- answered
- 312 views
- $5.00
Related Questions
- Critique my proof (beginner)
- proof by induction
- Let $f\in C (\mathbb{R})$ and $f_n=\frac{1}{n}\sum\limits_{k=0}^{n-1} f(x+\frac{k}{n})$. Prove that $f_n$ converges uniformly on every finite interval.
- Operational Research probabilistic models
- $Use induction to prove that for any natural n the following holds: 1\bullet2+2\bullet 3+...+(n-1)\bullet n=\frac{(n-1)n(n+1)}{3} $
- Topic: Large deviations, in particular: Sanov's theorem
-
Math Proofs: "An alternative notation is sometimes used for the union or intersection of an indexed family of sets."
- Advice for proving existence claims