Topic: Large deviations, in particular: Sanov's theorem

Let $\Sigma$ be a Polish space and $M_1(\Sigma)$ be the space of probability measures in $\Sigma$. Prove that
$$\left\lVert\nu-\mu\right\rVert_{var}^2\leq 2\textbf{H}(\nu|\mu), \ \ \ \ \mu,\nu\in\textbf{M}_1(\Sigma).\tag{*}$$
A proof of (*) can be based on the observation that
$$3(x-1)^2\leq(4+2x)(x\log x-x+1),\ \ \ \ x\in[0,\infty),$$
the fact that $\left\lVert\nu-\mu\right\rVert_{var}=\left\lVert f-1\right\rVert_{L^1(\mu)}$ if $\nu <<\mu$ and $f=\frac{d\nu}{d\mu}$, and Schwartz's inequality.

$\textbf{H}(\nu|\mu)=\left\{ \begin{array}{rcl} \int_\Sigma f\log f\ d\mu & if\ \ \nu\ll\mu\ and\ \ f=\frac{d\nu}{d\mu}\\ \infty & otherwise \end{array}\right.$
side note: $\int_\Sigma f\log f\ d\mu=\int_\Sigma \log f\ d\nu$

$\left\lVert\alpha\right\rVert_{var}=\sup\bigg\{\int\phi\ d\alpha:\phi\in C_b(\Sigma;\mathbb{R})\ with\ \left\lVert\phi\right\rVert_{C_b}\leq 1\bigg\}$
is the (total) variation norm (that is the definition in large deviation book written by jean-dominique deuschel and daniel w. stroock)

  • What is H?

  • H is relative entropy

  • Can you upload the definition of conditional entropy as well? Different textbooks use slightly different definitions. Does "var" norm means the total variation norm?

  • I added some definition to the question, and by the way, I need the answer in like 15 hours from now, I accidentally added the extra time

  • Never mind, I found the solution


Answers can be viewed only if
  1. The questioner was satisfied and accepted the answer, or
  2. The answer was disputed, but the judge evaluated it as 100% correct.
View the answer

1 Attachment

  • damn, it is perfect (unless i miss something) thank you very much.

The answer is accepted.