Probability - Expectation calculation for a function.
A company manufactures metal poles. Suppose the length of a pole is a random variable X, with mean $\mu _X$ and probability density function $f_X(x)$ . Poles are cut to obtain an exact length 𝐿. If the initial length of the pole is less than 𝐿, the entire pole is lost. If it is greater than 𝐿, the pole will be cut down to 𝐿, and the section left over is lost. We are interested in the random variable 𝑌, defined as the length of each piece lost.
Sketch the graph of the function 𝑔 that maps the pole length 𝑥 to the lost length 𝑦, and so derive $\mu _Y$ = 𝔼(𝑌) as a function of $f_X(x)$ and $\mu _X$.
Suppose that 𝑋 follows a normal distribution with mean $\mu _X$ and variance $\sigma _X ^2$ . Show that there exists a value $\mu ^*$ of $\mu _X$ that minimizes $\mu _Y$.
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
- answered
- 1284 views
- $5.00
Related Questions
- Probability and Statistics Question
- Insurance question involving net premium
- A miner trapped in a mine
- Coincidence or pattern?
- Bayesian statistics
- Suppose that X is a random variable uniform in (0, 1), and define $M = 2 \max\{X, 1− X\} − 1$. Determine the distribution function of M.
- Probability that the distance between two points on the sides of a square is larger than the length of the sides
- Probability of more than 1 goal at the end of a match