Probability - Expectation calculation for a function.
A company manufactures metal poles. Suppose the length of a pole is a random variable X, with mean $\mu _X$ and probability density function $f_X(x)$ . Poles are cut to obtain an exact length 𝐿. If the initial length of the pole is less than 𝐿, the entire pole is lost. If it is greater than 𝐿, the pole will be cut down to 𝐿, and the section left over is lost. We are interested in the random variable 𝑌, defined as the length of each piece lost.
Sketch the graph of the function 𝑔 that maps the pole length 𝑥 to the lost length 𝑦, and so derive $\mu _Y$ = 𝔼(𝑌) as a function of $f_X(x)$ and $\mu _X$.
Suppose that 𝑋 follows a normal distribution with mean $\mu _X$ and variance $\sigma _X ^2$ . Show that there exists a value $\mu ^*$ of $\mu _X$ that minimizes $\mu _Y$.
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

- answered
- 833 views
- $5.00
Related Questions
- How do you calculate per 1,000? And how do you compensate for additional variables?
- Find the odds of event b
- Compound Interest with monthly added capital
- Combinatorics questions- can someone please help?
- Slot Machine Probability
- Bayes theorema question, two tests (one positive, one negative)
- Probability question regarding Moment genrating function and Chebyshev's ineqaulity(show in file).
- Pdf/cdf Probability