Convergence in Lp
Let $\{X_n\}$ be a sequence of random variables and $S_n:=\sum_{j=1}^n X_j$. Proof that if $X_n\overset{\mathcal{L}_p}{\to}0$ for some $p\geq 1$, then $n^{-1}S_n\overset{\mathcal{L}_p}{\to} 0$ but the converse is not true in general.
Interwebff
14
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Dynkin
779
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 610 views
- $9.50
Related Questions
- Random Walk on Cube
- Conditional mean and variance for joint PDF
- Bayes theorema question, two tests (one positive, one negative)
- CLT and probability
- Statistics and Probability
- Promotional Concept (Probability)
- A bag contains 3 red jewels and 7 black jewels. You randomly draw the jewels out one by one without replacement. What is the probability that the last red jewel was the 8th one withdrawn?
- Car accidents and the Poisson distribution