Fix any errors in my proof (beginner)
Last time I did this I wasn't aware how difficult the proof was, but this one should be fairly straightforward. I upped the bounty regardless, though.
Critique my proof of the following theorem on correctness, structure, etc.
Theorem. Suppose $A$ and $B$ are sets. Prove that if $A \cap B = A$, then $A \subseteq B$.
Proof. Suppose $A \cap B = A$. Let $x$ be arbitrary and $x \in A$. Because $A \cap B = A$, it follows that $x \in A$ and $x \in B$. Because x is arbitrary, it must be the case that $\forall x(x\in A \implies x \in B)$, so $A \subseteq B$. Therefore, if $A\cap B = A$, then $A \subseteq B$.
1.4K
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1467 views
- $5.00
Related Questions
- Fix any errors in my proof (beginner)
- Advice for proving existence claims
- Fix any errors in my proof (beginnner)
- Induction proof for an algorithm. Introductory level discrete math course. See attachment for details
- Discrete Structures - Proving a statement true
-
Math Proofs: "An alternative notation is sometimes used for the union or intersection of an indexed family of sets."
- Combinatorics proof by induction
- $Use induction to prove that for any natural n the following holds: 1\bullet2+2\bullet 3+...+(n-1)\bullet n=\frac{(n-1)n(n+1)}{3} $