Fix any errors in my proof (beginner)
Last time I did this I wasn't aware how difficult the proof was, but this one should be fairly straightforward. I upped the bounty regardless, though.
Critique my proof of the following theorem on correctness, structure, etc.
Theorem. Suppose $A$ and $B$ are sets. Prove that if $A \cap B = A$, then $A \subseteq B$.
Proof. Suppose $A \cap B = A$. Let $x$ be arbitrary and $x \in A$. Because $A \cap B = A$, it follows that $x \in A$ and $x \in B$. Because x is arbitrary, it must be the case that $\forall x(x\in A \implies x \in B)$, so $A \subseteq B$. Therefore, if $A\cap B = A$, then $A \subseteq B$.
Anonymous
1.4K
Answer
Answers can be viewed only if
 The questioner was satisfied and accepted the answer, or
 The answer was disputed, but the judge evaluated it as 100% correct.
Erdos
4.6K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to 50% commission on every question your affiliated users ask or answer.
 answered
 392 views
 $5.00
Related Questions
 Fix any errors in my proof (beginner)
 Proof through inclusion (A∆B) ∪ A = A ∪ B

Math Proofs: "An alternative notation is sometimes used for the union or intersection of an indexed family of sets."
 Let $f\in C (\mathbb{R})$ and $f_n=\frac{1}{n}\sum\limits_{k=0}^{n1} f(x+\frac{k}{n})$. Prove that $f_n$ converges uniformly on every finite interval.
 Fix any errors in my proof (beginner)
 Induction proof for an algorithm. Introductory level discrete math course. See attachment for details
 Topic: Large deviations, in particular: Sanov's theorem
 proof by induction