$Use induction to prove that for any natural n the following holds: 1\bullet2+2\bullet 3+...+(n-1)\bullet n=\frac{(n-1)n(n+1)}{3} $
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
4.8K
-
Would you like to provide me your discord username so I may use you in the future? I am looking for someone to assist with a number of upcoming questions.
-
It's against the website rules to share personal information. You can post your questions here and I will try to answer your questions. There are many other qualified users who answer questions on the website meeting the high standards of the website.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1367 views
- $4.04
Related Questions
- Let $f\in C (\mathbb{R})$ and $f_n=\frac{1}{n}\sum\limits_{k=0}^{n-1} f(x+\frac{k}{n})$. Prove that $f_n$ converges uniformly on every finite interval.
- Suppose that $(ab)^3 = a^3 b^3$ for all $a, b \in G$. Prove that G must be an abelian goup [Group Theory].
- proof by induction
- Operational Research probabilistic models
- Prove Property of Projection Matrices
- Prove that: |x| + |y| ≤ |x + y| + |x − y|.
- Two statistics proofs with regressions, any help much appreciated!
- Advice for proving existence claims