Given $|f(x) - f(y)| \leq M|x-y|^2$ , prove that f is constant.
Let f be differentiable on R and suppose that there exists M > 0 such that, for any x, y $\in$ R, $|f(x) - f(y)| \leq M|x-y|^2$. Prove that f is a constant function.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
2.1K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1805 views
- $8.00
Related Questions
- Calculating Driveway Gravel Area and Optimizing Cardboard Box Volume
- Application Of Integrals
- Find the coordinates of the point $(1,1,1)$ in Spherical coordinates
- Evaluate the integral $\int_{-\infty}^{+\infty}e^{-x^2}dx$
- Show that the MLE for $\sum_{i=1}^{n}\left(\ln{2x_i} - 2\ln{\lambda} - \left(\frac{x_i}{\lambda}\right)^2\right)$ is $\hat{\lambda} = \sqrt{\sum_{i=1}^{n}\frac{x_i^2}{n}}$.
- Prove that $\int_{-\infty}^{\infty}\frac{\cos ax}{x^4+1}dx=\frac{\pi}{2}e^{-\frac{a}{\sqrt{2}}}(\cos \frac{a}{\sqrt{2}}+\sin \frac{a}{\sqrt{2}} )$
- Studying the graph of this function
- Find $\int \sec^2 x \tan x dx$