Beginner Differential Equations - Growth Rate Question
Let N(t) represent the number of humans on Earth at year t.
We shall assume that the population is continuously changing.
Suppose the number of humans on Earth on the first day of the year in 1960 (which we shall set at: t = 0) is 3 billion.
The growth rate of the population may be defined by:
(1/N)(dN/dt)
Assuming a constant growth rate of 3%, what population level (in billions) does this model predict for the first day of the year 1995?
Answer correct to 2 decimal places.
17
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
3.5K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 682 views
- $5.00
Related Questions
- Volume of solid of revolution
- Why does $ \sum\limits_{n=1}^{\infty } 2^{2n} \times \frac{(n!)^2}{n(2n+1)(2n)!} =2 $ ?
- Explain parameter elimination for complex curves
- Two calculus questions
- Rouche’s Theorem applied to the complex valued function $f(z) = z^6 + \cos z$
-
Find a general solution for the lengths of the sides of the rectangular parallelepiped with the
largest volume that can be inscribed in the following ellipsoid - Custom Solutions to Stewart Calculus Problems, 9th Edition
- Mechanical principle help (maths)