Prove that ${n\choose 2}2^{n-2}=\sum\limits_{k=2}^{n}{n\choose k}{k\choose 2}$ for all $n\geq 2$
Answer
Assume that there if going to be a party and you have $n$ friends, and $2$ out of your $n$ friends will go and bring pizza. The remaining $n-2$ may or may not go to the party. The total number of ways that your friends may go to the party and bring pizza is
\[{n \choose2}2^{n-2}.\]
Indeed there are ${n \choose2}$ ways to choose the two friends who would bring pizza, and the remaining $(n-2)$ each have 2 options i.e. they may or may not go to the party which gives $2^{n-2}$ possibilities.
We can count the total number of ways that your friends may go to the party and bring pizza in a different way. A total number k, $k\geq 2$, may attend the party and two of them will bring pizza. The number of possibilities are
\[{n \choose k}{k \choose2}.\]
Summing over $k$ we get
\[\sum_{k=2}^{n}{n \choose k}{k \choose2}.\]
Hence
\[{n \choose2}2^{n-2}=\sum_{k=2}^{n}{n \choose k}{k \choose2}.\]
Indeed there are ${n \choose k}$ ways to choose $k$ friends who would go to the party, and we can choose $2$ poeple from the $k$ people who are going to the party in ${k \choose 2}$ ways to bring pizza.

- answered
- 3473 views
- $8.00
Related Questions
- Find the absolute extrema of $f(x,y) = x^2 - xy + y^2$ on $|x| + |y| \leq 1$.
- Show that the distance between two nonparallel lines is given by $\frac{|(p_2-p_1)\cdot (a_1\times a_2)|}{|| a_2\times a_1||}$
- Rewrite $\int_{\sqrt2}^{2\sqrt2} \int_{-\pi/2}^{-\pi/4} r^2cos(\theta)d\theta dr$ in cartesian coordinates (x,y)
- Evaluate the integral $\int_{-\infty}^{+\infty}e^{-x^2}dx$
- Algebra Word Problem 2
- Integrate $\int \frac{1}{x^2+x+1}dx$
- Extremal values/asymptotes
- Calculus Help