Compute $\lim _{n \rightarrow \infty} \frac{1}{n}\ln \frac{(2n)!}{n^n n!}$
Answer
Answers can be viewed only if
- The questioner was satisfied and accepted the answer, or
- The answer was disputed, but the judge evaluated it as 100% correct.
The answer is accepted.
- answered
- 182 views
- $6.00
Related Questions
- Find $n$ such that $\lim _{x \rightarrow \infty} \frac{1}{x} \ln (\frac{e^{x}+e^{2x}+\dots e^{nx}}{n})=9$
- Vector field
- Proving f is continuous
- Find $\lim _{x \rightarrow 0^{+}} \sqrt{x}\ln x$
- Prove that ${n\choose 2}2^{n-2}=\sum\limits_{k=2}^{n}{n\choose k}{k\choose 2}$ for all $n\geq 2$
- Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that $f(2n)+2f(2m)=f(f(n+m))$, $\forall m,n\in \mathbb{Z}$
- Please solve the attached problem from my worksheet
- Calculus on Submanifolds Challenge