Fix any errors in my proof (beginner)
Critique my proof on correctness, structure, etc.
Theorem. For every integer n, $6 \vert n$ $\ \text iff$ $2 \vert n$ and $3 \vert n$.
Proof. Let $n$ be an arbitrary integer.
$(\rightarrow)$ Suppose $6 \vert n$. $\exists k \in \mathbb{Z}(6k = n)$, so $3(2k) = n$ and $n \vert3$. Likewise, $6k = 2(3k) = n$, so $2 \vert n$. Thus, $2 \vert n$ and $3 \vert n$.
$(\leftarrow)$ Suppose $n \vert 3$ and $n \vert 2$. $\exists j \in \mathbb{Z} (3j = n)$ and $\exists k \in \mathbb{Z} (2k = n)$. Thus $6(k - j) = 6k - 6j = 3(2k) - 2(3j) = 3n - 2n = n$. Becaus $k - j$ is an integer, it follows that $n \vert 6$.
$\therefore$ $\forall n \in \mathbb{Z}$, $6 \vert n$ $\ \text iff$ $2 \vert n$ and $3 \vert n$.
Faithalone
361
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Alessandro Iraci
1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 567 views
- $5.00
Related Questions
- Combinatorics proof by induction
- Suppose that $(ab)^3 = a^3 b^3$ for all $a, b \in G$. Prove that G must be an abelian goup [Group Theory].
- Two statistics proofs with regressions, any help much appreciated!
- Induction proof for an algorithm. Introductory level discrete math course. See attachment for details
- proof by induction
- Critique my proof (beginner)
- Operational Research probabilistic models
- Topic: Large deviations, in particular: Sanov's theorem