Find the equation of the line, $\vec{L}$ where planes ${P_1}$ and ${P_2}$ intersect:
1 Answer
Since the line of intersection lies on both planes, the direction $v$ of the line is orthogonal to the normal vectors of both plane. Hence we can take the direction of the line to be
\[v=(2,-3,5)\times (-2,-3,5)=\begin{vmatrix} i & j & k \\ 2 & -3 & 5 \\ -2 & -3 & 5 \end{vmatrix} \]
\[=i(-15+15)-j(10+10)+k(-6-6)\]
\[=-20j-12k.\]
So $v=-20j-12k$. Next we find a point on the intersection of the two planes. Set $z=0$. Then
\[2x-3y=5, \text{and} -2x-3y=3.\]
Solving this system of equations we get
\[x=\frac{1}{2}, y=-\frac{4}{3}.\]
Thus $(\frac{1}{2}, -\frac{4}{3}, 0 )$ lies on both lines. Hence the parametric equation of the intersection line is
\[x=\frac{1}{2}, y=-\frac{4}{3}-20t, z= 12 t.\]

-
This type of questions should generally come with a fair bounty. I decided to answer as I thought this might be the first time you are asking a question here :)
-
Thank you so much! and yes this is my first time asking a question.
-
-
Let me know if you have any questions about the solution.
- 1 Answer
- 302 views
- Pro Bono
Related Questions
- Rainbow Vectors
- Beginner Question on Integral Calculus
- Find the area under the graph of $y=\sin x$ between $x=0$ and $x=\pi$.
- Use Stokes's Theorem to evaluate $\iint_S ( ∇ × F ) ⋅ d S$ on the given surface
- The cross sectional area of a rod has a radius that varies along its length according to the formula r = 2x. Find the total volume of the rod between x = 0 and x = 10 inches.
- Volume of the solid of revolution
- Help with differentating business caluclus problem.
- Prove the trig identity $\frac{\sin x +\tan x}{1+\sec x}=\sin x$