Compute $\oint_C y^2dx+3xydy $ where where $C$ is the counter clickwise oriented boundary of upper-half unit disk
Answer
Let $D$ be the upper-half unit disk. Using Green's theorem we get
\[\oint_C y^2dx+3xydy =\iint_D \frac{\partial}{\partial x}(3xy)-\frac{\partial}{\partial y}(y^2)dxdy\]
\[=\iint _D y dx dy=\int_{-1}^{1}\int_{0}^{\sqrt{1-x^2}}ydydx\]
\[=\int_{-1}^{1} \frac{y^2}{2}\Big|_0^{\sqrt{1-x^2}}dx =\int_{-1}^{1} \frac{1-x^2}{2}\]
\[=\frac{1}{2}(x-\frac{x^3}{3})\Big|_{-1}^{1}=\frac{1}{2}\Big(\frac{2}{3}- (-\frac{2}{3})\Big)=\frac{2}{3}.\]

4.8K
-
Leave a comment if you need any clarifications.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2783 views
- $4.00
Related Questions
- Volume of the solid of revolution for $f(x)=\sin x$
- Question 1 calculus
- Does an inequality of infinite sums imply another?
- Volume of the solid of revolution
- Relating integrals to the area under the curve using rectangles.
- Scalar fields, potentia
- Find the derivative of the function $f(x)=\sqrt{\sin^2x+e^x+1}$
- Show that $\psi:L(E,L(E,F))\rightarrow L^2(E,F)$ given by $[\psi(T)](u,v)=[T(u)](v)$ is a linear homeomorphism