Compute $\oint_C y^2dx+3xydy $ where where $C$ is the counter clickwise oriented boundary of upper-half unit disk
Answer
Let $D$ be the upper-half unit disk. Using Green's theorem we get
\[\oint_C y^2dx+3xydy =\iint_D \frac{\partial}{\partial x}(3xy)-\frac{\partial}{\partial y}(y^2)dxdy\]
\[=\iint _D y dx dy=\int_{-1}^{1}\int_{0}^{\sqrt{1-x^2}}ydydx\]
\[=\int_{-1}^{1} \frac{y^2}{2}\Big|_0^{\sqrt{1-x^2}}dx =\int_{-1}^{1} \frac{1-x^2}{2}\]
\[=\frac{1}{2}(x-\frac{x^3}{3})\Big|_{-1}^{1}=\frac{1}{2}\Big(\frac{2}{3}- (-\frac{2}{3})\Big)=\frac{2}{3}.\]

4.8K
-
Leave a comment if you need any clarifications.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2728 views
- $4.00
Related Questions
- Applications of Stokes' Theorem
- What is this question asking and how do you solve it?
- Select the Correct Curve Sketches and Equations of Curves
- Need help with finding equation of the plane containing the line and point. Given the symmetric equation.
- Evaluate $\int ...\int_{R_n}dV_n(x_1^2 + x_2^2 + ... + x_n^2)$ , where $n$ and $R_n$ is defined in the body of this question.
- Help with Business Calculus problem.
- Taylor Polynom/Lagrange form om the remainder term.
- Show that the distance between two nonparallel lines is given by $\frac{|(p_2-p_1)\cdot (a_1\times a_2)|}{|| a_2\times a_1||}$