Compute $\oint_C y^2dx+3xydy $ where where $C$ is the counter clickwise oriented boundary of upper-half unit disk
Answer
Let $D$ be the upper-half unit disk. Using Green's theorem we get
\[\oint_C y^2dx+3xydy =\iint_D \frac{\partial}{\partial x}(3xy)-\frac{\partial}{\partial y}(y^2)dxdy\]
\[=\iint _D y dx dy=\int_{-1}^{1}\int_{0}^{\sqrt{1-x^2}}ydydx\]
\[=\int_{-1}^{1} \frac{y^2}{2}\Big|_0^{\sqrt{1-x^2}}dx =\int_{-1}^{1} \frac{1-x^2}{2}\]
\[=\frac{1}{2}(x-\frac{x^3}{3})\Big|_{-1}^{1}=\frac{1}{2}\Big(\frac{2}{3}- (-\frac{2}{3})\Big)=\frac{2}{3}.\]

4.8K
-
Leave a comment if you need any clarifications.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 3547 views
- $4.00
Related Questions
- Method of cylindrical shells
- Calculus 3
- Epsilon delta 2
- Limits calculus problem
- How to calculate a 3-dimensional Riemann integral
- Double Integrals
- You have 100 feet of cardboard. You need to make a box with a square bottom, 4 sides, but no top.
- Evaluate $\int ...\int_{R_n}dV_n(x_1^2 + x_2^2 + ... + x_n^2)$ , where $n$ and $R_n$ is defined in the body of this question.