Combinations of factors not observed, non-full rank design matrix. How to explain to investigator?
So I am helping someone with a differential expression analysis, there are only 10 samples, two variables with two levels each. Let's say Sex (M/F) and Age (Old/Young). They originally wanted to model: ~ sex + age + sex*age
However Sex = F & Age = Young does not exist in
the data (no sample with that combination observed), so model matrix is not full rank and DESEQ model can't be specified.
I warned them of this and their solution was to concat the Sex and Age variables to a new var (let's just say V3) and run the model with only ~
V3
I know this technically works... (as in the design matrix is full rank), but I also know it isn't a great idea, basically bc we are extrapolating and are now unable to make any claims about M vs For Old vs. Young.
Any tips on how to explain this to the investigators?
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Kav10
1.9K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 498 views
- $8.00
Related Questions
- Product of Numbers from a Log Normal Distribution
- Hypothesis Testing, Probabilities
- Maximum Likelihood Estimation
- Quantile function of CDF
- Why is the t-test for two independent samples $\ t^* = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$?
- stats - data analysis
- The derivation of the formula for variance for a Pareto Distribution
- Correlation of Normal Random Variables
The offered bounty is low for the level of the question.