Car accidents and the Poisson distribution
Answer
Let $X$ be the number of accidents per week. Then $X$ has the Poisson distribution
\[p(x)=\frac{\lambda^{x}e^{-\lambda}}{x!}, x=0,1,2, \dots .\]
Since the average number of accidents happen per week is $5$, $\lambda=5$. Hence
\[p(x)=\frac{5^{x}e^{-5}}{x!}, x=0,1,2, \dots .\]
The probabality of no accident is
\[P[X=0]=\frac{5^{0}e^{-5}}{0!}=\frac{e^{-5}}{1}=e^{-5}=\frac{1}{e^{5}}=0.0067=6.7\%.\]
Note that $0! =1$.

4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 3162 views
- $5.00
Related Questions
- What would be the probability of "breaking the bank" in this 1985 Blackjack game? (Details in body)
- Calculating Driveway Gravel Area and Optimizing Cardboard Box Volume
- Mathematical modeling
- Elements in a set
- foundations of probability
- Curve of a bending stick. 🤔🤔🤔
- Algebra Word Problem 1
- Stats project