Verex form of a quadratic function
1 Answer
We try to write this fuunction $f(x)=-4x^2+4x+3$ in the vertex form $y = a(x - h)^2+ k$.
We will do this by factoring the coefficient of $x^2$ first and then completing the square:
\[f(x)=-4x^2+4x+3=-4(x^2-x-\frac{3}{4})\]
\[=-4(x^2-x+\frac{1}{4}-\frac{3}{4}-\frac{1}{4})\]
\[=-4(x^2-x+\frac{1}{4}-1)\]
\[=-4((x-\frac{1}{2})^2-1)\]
\[=-4(x-\frac{1}{2})^2+4,\]
which is in the vertex form.

133
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 433 views
- Pro Bono
Related Questions
- Let $z = f(x − y)$. Show that $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$
- Grade 11 math
- Internal Rate of Return vs Discount Rate
- Fields and Galois theory
- Find $x$ so that $\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ -\frac{1}{a} & x & x^2 \end{pmatrix}$ is invertible
- Artin-Wedderburn isomorphism of $\mathbb{C}[S_3]$
- Show that the distance between two nonparallel lines is given by $\frac{|(p_2-p_1)\cdot (a_1\times a_2)|}{|| a_2\times a_1||}$
- Prove that $tan x +cot x=sec x csc x$