Verex form of a quadratic function
1 Answer
We try to write this fuunction $f(x)=-4x^2+4x+3$ in the vertex form $y = a(x - h)^2+ k$.
We will do this by factoring the coefficient of $x^2$ first and then completing the square:
\[f(x)=-4x^2+4x+3=-4(x^2-x-\frac{3}{4})\]
\[=-4(x^2-x+\frac{1}{4}-\frac{3}{4}-\frac{1}{4})\]
\[=-4(x^2-x+\frac{1}{4}-1)\]
\[=-4((x-\frac{1}{2})^2-1)\]
\[=-4(x-\frac{1}{2})^2+4,\]
which is in the vertex form.

133
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 387 views
- Pro Bono
Related Questions
- The last six digits of the number $30001^{18} $
- Algebra Word Problem 2
- Find $x$ so that $\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ -\frac{1}{a} & x & x^2 \end{pmatrix}$ is invertible
- Closest Points on Two Lines: How to use algebra on equations to isolate unknowns?
- Algebra Word Problem #2
- Representation theory 2 questions
- Populace Model
- How do you do absolute value equations with inequalities?