Find $x$ so that $\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ -\frac{1}{a} & x & x^2 \end{pmatrix}$ is invertible
Answer
Let
\[A=\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ -\frac{1}{a} & x & x^2 \end{pmatrix}.\]
Then $\frac{1}{a}R_1+R_3 \rightarrow R_3$ gives
\[\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ 0 & x & x^2+\frac{c}{a} \end{pmatrix},\]
and $-\frac{x}{a}R_2+R_3 \rightarrow R_3$ gives
\[\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ 0 & 0 & \frac{b}{a}x+x^2+\frac{c}{a} \end{pmatrix}.\]
Hence
\[\text{det}(A)=a(\frac{b}{a}x+x^2+\frac{c}{a})=0\]
\[\Rightarrow ax^2+b x+c=0\]
\[\Rightarrow x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}.\]
Hence the matrix $A$ is invertible if and only if
\[x\neq\frac{-b \pm \sqrt{b^2-4ac}}{2a}.\]
574
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 3147 views
- $7.00
Related Questions
- Eigenvalues and eigenvectors of $\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix} $
- Determine the angle
- Diagonal and Similar Matrices
- Population Equations
- [Rotations in R^3 ] Consider R∶ R^3 → R^3 the linear transformation that rotates π/3 around the z-axis
- Linear Transformation Problems
- Find eigenvalues and eigenvectors of $\begin{pmatrix} -3 & 0 & 2 \\ 1 &-1 &0\\ -2 & -1& 0 \end{pmatrix} $
- I really can't figure out equations with a power of 2 in it, please solve these and explain every step as if I was a baby.