Find $x$ so that $\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ -\frac{1}{a} & x & x^2 \end{pmatrix}$ is invertible
Answer
Let
\[A=\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ -\frac{1}{a} & x & x^2 \end{pmatrix}.\]
Then $\frac{1}{a}R_1+R_3 \rightarrow R_3$ gives
\[\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ 0 & x & x^2+\frac{c}{a} \end{pmatrix},\]
and $-\frac{x}{a}R_2+R_3 \rightarrow R_3$ gives
\[\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ 0 & 0 & \frac{b}{a}x+x^2+\frac{c}{a} \end{pmatrix}.\]
Hence
\[\text{det}(A)=a(\frac{b}{a}x+x^2+\frac{c}{a})=0\]
\[\Rightarrow ax^2+b x+c=0\]
\[\Rightarrow x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}.\]
Hence the matrix $A$ is invertible if and only if
\[x\neq\frac{-b \pm \sqrt{b^2-4ac}}{2a}.\]

574
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2203 views
- $7.00
Related Questions
- Find $\lim _{x \rightarrow 0} x^{x}$
- Show that $tr(\sqrt{\sqrt A B \sqrt A})\leq 1$ , where both $A$ and $B$ are positive semidefinite with $tr(A)=tr(B)=1.$
- How do I evaluate and interpret these sets of vectors and their geometric descriptions?
- Need Upper Bound of an Integral
- Diagonalization of linear transformations
- Can enough pizza dough be made to cover the surface of the earth?
- True or false
- Induced and restricted representation