Find $x$ so that $\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ -\frac{1}{a} & x & x^2 \end{pmatrix}$ is invertible
Answer
Let
\[A=\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ -\frac{1}{a} & x & x^2 \end{pmatrix}.\]
Then $\frac{1}{a}R_1+R_3 \rightarrow R_3$ gives
\[\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ 0 & x & x^2+\frac{c}{a} \end{pmatrix},\]
and $-\frac{x}{a}R_2+R_3 \rightarrow R_3$ gives
\[\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ 0 & 0 & \frac{b}{a}x+x^2+\frac{c}{a} \end{pmatrix}.\]
Hence
\[\text{det}(A)=a(\frac{b}{a}x+x^2+\frac{c}{a})=0\]
\[\Rightarrow ax^2+b x+c=0\]
\[\Rightarrow x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}.\]
Hence the matrix $A$ is invertible if and only if
\[x\neq\frac{-b \pm \sqrt{b^2-4ac}}{2a}.\]
The answer is accepted.
- answered
- 347 views
- $7.00
Related Questions
- two short Linear Algebra questions
- Find the coordinates of the point $(1,1,1)$ in Spherical coordinates
- Need Upper Bound of an Integral
- Linear algebra
- Find $x$, if $\sqrt{x} + 2y^2 = 15$ and $\sqrt{4x} − 4y^2 = 6$.
- Use Rouche’s Theorem to show that all roots of $z ^6 + (1 + i)z + 1 = 0$ lines inside the annulus $ \frac{1}{2} \leq |z| \leq \frac{5}{4}$
- Conjugate / Transpose - Matrix
- Donald is 6 years older than Sophia. In 4 years the sum of their ages will be 74. How old is Donald now?