Module isomorphism and length of tensor product.
See image: Why is the isomorphism of $\Psi_A$ modules true and how do we show the length equality? Notation: $A$ is a commutative, Noetherian, local ring together with a surjective homomorphism to a discrete valuation ring: $\lambda: A \rightarrow \mathcal{O} , p_A=ker(\lambda), I_A= Ann[p_A]$ (the annihilator of the kernel of the map), $\Psi_A=\mathcal{O}/\lambda(I_A), M[I]=\{m \in M: mi=0, \forall i \in I\}$ (for every ideal $I$ of $A$), $\hat{\Psi}_A= \frac{M}{M[I_A]+I_AM}$. Please let me know if you need to know any more facts.
152
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
779
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1458 views
- $30.00
Related Questions
- College Algebra Help
- Prove that $tan x +cot x=sec x csc x$
- $Tor$ over finite rings
- Algebra 1 (6 questions)
- How do you go about solving this question?
- Five times the larger of two consecutive odd integers is equal to one more than eight times the smaller. Find the integers.
- Algebra Word Problem 1
- Foreign Carnival Systems Algebra Problem