Module isomorphism and length of tensor product.
See image: Why is the isomorphism of $\Psi_A$ modules true and how do we show the length equality? Notation: $A$ is a commutative, Noetherian, local ring together with a surjective homomorphism to a discrete valuation ring: $\lambda: A \rightarrow \mathcal{O} , p_A=ker(\lambda), I_A= Ann[p_A]$ (the annihilator of the kernel of the map), $\Psi_A=\mathcal{O}/\lambda(I_A), M[I]=\{m \in M: mi=0, \forall i \in I\}$ (for every ideal $I$ of $A$), $\hat{\Psi}_A= \frac{M}{M[I_A]+I_AM}$. Please let me know if you need to know any more facts.
Jbuck
152
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Dynkin
779
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 731 views
- $30.00
Related Questions
- A word problem about a rectangular carpet
- Evaluate $\int_0^{\frac{\pi}{2}}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} dx$
- Algebra Word Problem #2
- Compounding interest of principal P, where a compounding withdrawal amount W get withdrawn from P before each compounding of P.
- Center of algebra of functions
- Can enough pizza dough be made to cover the surface of the earth?
- Trying to solve this system of simultaneous equations. A solution with work shown would be appreciated.
- Does $\lim_{n \rightarrow \infty} \frac{2^{n^2}}{n!}$ exist?