Module isomorphism and length of tensor product.

See image: Why is the isomorphism of  $\Psi_A$ modules true and how do we show the length equality? Notation: $A$ is a commutative, Noetherian, local ring together with a surjective homomorphism to a discrete valuation ring: $\lambda: A \rightarrow \mathcal{O} , p_A=ker(\lambda),  I_A= Ann[p_A]$ (the annihilator of the kernel of the map), $\Psi_A=\mathcal{O}/\lambda(I_A), M[I]=\{m \in M: mi=0, \forall i \in I\}$ (for every ideal $I$ of $A$), $\hat{\Psi}_A= \frac{M}{M[I_A]+I_AM}$. Please let me know if you need to know any more facts.


Answers can be viewed only if
  1. The questioner was satisfied and accepted the answer, or
  2. The answer was disputed, but the judge evaluated it as 100% correct.
View the answer
The answer is accepted.
Join Matchmaticians Affiliate Marketing Program to earn up to 50% commission on every question your affiliated users ask or answer.