Module isomorphism and length of tensor product.
See image: Why is the isomorphism of $\Psi_A$ modules true and how do we show the length equality? Notation: $A$ is a commutative, Noetherian, local ring together with a surjective homomorphism to a discrete valuation ring: $\lambda: A \rightarrow \mathcal{O} , p_A=ker(\lambda), I_A= Ann[p_A]$ (the annihilator of the kernel of the map), $\Psi_A=\mathcal{O}/\lambda(I_A), M[I]=\{m \in M: mi=0, \forall i \in I\}$ (for every ideal $I$ of $A$), $\hat{\Psi}_A= \frac{M}{M[I_A]+I_AM}$. Please let me know if you need to know any more facts.
Jbuck
152
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Dynkin
779
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 879 views
- $30.00
Related Questions
- Find the coordinates of the point $(1,1,1)$ in Spherical coordinates
- Find $\int x \sqrt{1-x}dx$
- Trying to solve this system of simultaneous equations. A solution with work shown would be appreciated.
- Points of intersection between a vertical and horizontal parabola
- Need to figure distance between two points/lines.
- Find the null space of the matrix $\begin{pmatrix} 1 & 2 & -1 \\ 3 & -3 & 1 \end{pmatrix}$
- Evaluate $\int \ln(\sqrt{x+1}+\sqrt{x}) dx$
- Prove that $A - B=A\cap B^c$