Module isomorphism and length of tensor product.
See image: Why is the isomorphism of $\Psi_A$ modules true and how do we show the length equality? Notation: $A$ is a commutative, Noetherian, local ring together with a surjective homomorphism to a discrete valuation ring: $\lambda: A \rightarrow \mathcal{O} , p_A=ker(\lambda), I_A= Ann[p_A]$ (the annihilator of the kernel of the map), $\Psi_A=\mathcal{O}/\lambda(I_A), M[I]=\{m \in M: mi=0, \forall i \in I\}$ (for every ideal $I$ of $A$), $\hat{\Psi}_A= \frac{M}{M[I_A]+I_AM}$. Please let me know if you need to know any more facts.
152
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
779
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1142 views
- $30.00
Related Questions
- The last six digits of the number $30001^{18} $
- Find $\lim _{x \rightarrow 0} x^{x}$
- A word problem about a rectangular carpet
- Graph Equation from Test
- Use Rouche’s Theorem to show that all roots of $z ^6 + (1 + i)z + 1 = 0$ lines inside the annulus $ \frac{1}{2} \leq |z| \leq \frac{5}{4}$
- Grade 11 math
- College Algebra 1
- Find $n$ such that $\lim _{x \rightarrow \infty} \frac{1}{x} \ln (\frac{e^{x}+e^{2x}+\dots e^{nx}}{n})=9$