Maximum principle for the heat equation involving an aditional linear term
Let $\Omega$ be a bounded open region in $\mathbb{R}^n$, $\alpha >0$, $T>0$ and $f \in C^0 (\overline{\Omega})$ with $f \geq 0$ on $\Omega$. Also let $u \in C_1^2 (\Omega _T) \cap C^0 (\overline{\Omega}_T)$ satisfy $$ \begin{cases} u_t -\Delta u+ \alpha u = f(x) & \text{ in } \Omega _T \\ u=0 & \text{ on } \Gamma _T, \end{cases} $$ where $\Omega_T=\Omega \times (0,T]$ is the parabolic cylender, and $\Gamma_t$ is the parabolic boundary of $\Omega_T$. Prove that $u \geq 0$ and $u_t \geq 0$ in $\Omega \times \left[ 0,T \right]$.
Answer
Answers can be viewed only if
- The questioner was satisfied and accepted the answer, or
- The answer was disputed, but the judge evaluated it as 100% correct.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to 50% commission on every question your affiliated users ask or answer.
- answered
- 202 views
- $6.00
Related Questions
- Dynamic Systems of Differential Equations
- Why does this spatial discretization with n intervals have a position of (n-1)/n for each interval?
- Derive the solution $u(x,t)=\frac{x}{\sqrt{4 \pi}} \int_{0}^{t} \frac{1}{(t-s)^{3/2}}e^{\frac{-x^2}{4(t-s)}}g(s) \, ds$ for the heat equation
- Equipartition of energy in one dimensional wave equation $u_{tt}-u_{xx}=0 $
- Partial Differential Equations
- How does the traffic flow model arrive at the scaled equation?
- Solve the initial value problem $(\cos y )y'+(\sin y) t=2t$ with $y(0)=1$
- Explicit formula for the trasport equation