Maximum principle for the heat equation involving an aditional linear term
Let $\Omega$ be a bounded open region in $\mathbb{R}^n$, $\alpha >0$, $T>0$ and $f \in C^0 (\overline{\Omega})$ with $f \geq 0$ on $\Omega$. Also let $u \in C_1^2 (\Omega _T) \cap C^0 (\overline{\Omega}_T)$ satisfy $$ \begin{cases} u_t -\Delta u+ \alpha u = f(x) & \text{ in } \Omega _T \\ u=0 & \text{ on } \Gamma _T, \end{cases} $$ where $\Omega_T=\Omega \times (0,T]$ is the parabolic cylender, and $\Gamma_t$ is the parabolic boundary of $\Omega_T$. Prove that $u \geq 0$ and $u_t \geq 0$ in $\Omega \times \left[ 0,T \right]$.
Daniel
53
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Melissa G
46
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 838 views
- $6.00
Related Questions
- Week solution of the equation $u_t + u^2u_x = f(x,t)$
- Solve the two-way wave equation
- Integral of the fundamentla solution of the heat equation
- Why does this spatial discretization with n intervals have a position of (n-1)/n for each interval?
- Suppose $u \in C^2(\R^n)$ is a harmonic function. Prove that $v=|\nabla u|^2$ is subharmonic, i.e. $-\Delta v \leq 0$
- Show that $\int_\Omega \Delta f g = \int_\Omega f \Delta g$ for appropriate boundary conditions on $f$ or $g$
- Optimisation Problem
- Equipartition of energy in the wave equation