Double Integrals, polar coordinates, Stoke's theorem, and Flow line Questions
Answers to the questions, with step by step solutions. List and name any formulas used. Draw out each question/answer to aide in explanation.
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
2 Attachments

-
Hi Philip, would you mind explaining the steps you took in each question and why using words?
-
I think the solutions are fairly self-explanatory. Why don't you read the solutions and let me know if you have ant specific questions.
-
I added some explanations in the body of the question. Let me know if you have any questions.
-
Hey Philip. There was an error with the final answer for question 3 and for the evaluation of question 6, it is more complex and we are supposed to take the upper and lower bounds of the equation.
-
I doubled checked my answer for question 3. It seems to me that there is no mistake. The final answer is 6*5^4 =3750pi. Try the simplified final answer 3750pi.
-
I attached a more detailed solution for problem 6.
- answered
- 706 views
- $100.00
Related Questions
- Partial Derivatives and Graphing Functions
- Multivariable Calculus Questions
- Evaluate $\iint_D (x^2+y^2)^{3/2}dxdy$
- Double, Triple, and Change in Variables of Integrals Problems
- Let $z = f(x − y)$. Show that $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$
- Prove that $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$, under the given conditions on $f(x)$
- Finding Binormal vector from the derivative of the Normal and Tangent.
- Gauss's Theorem