Double Integrals, polar coordinates, Stoke's theorem, and Flow line Questions
Answers to the questions, with step by step solutions. List and name any formulas used. Draw out each question/answer to aide in explanation.
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
2 Attachments

-
Hi Philip, would you mind explaining the steps you took in each question and why using words?
-
I think the solutions are fairly self-explanatory. Why don't you read the solutions and let me know if you have ant specific questions.
-
I added some explanations in the body of the question. Let me know if you have any questions.
-
Hey Philip. There was an error with the final answer for question 3 and for the evaluation of question 6, it is more complex and we are supposed to take the upper and lower bounds of the equation.
-
I doubled checked my answer for question 3. It seems to me that there is no mistake. The final answer is 6*5^4 =3750pi. Try the simplified final answer 3750pi.
-
I attached a more detailed solution for problem 6.
- answered
- 771 views
- $100.00
Related Questions
- Evaluate $\int_C (2x^3-y^3)dx+(x^3+y^3)dy$, where $C$ is the unit circle.
- Find $n$ such that $\lim _{x \rightarrow \infty} \frac{1}{x} \ln (\frac{e^{x}+e^{2x}+\dots e^{nx}}{n})=9$
- Evaluate $\iiint_W z dx dy dz$ on the given region
- Find the volume of the solid obtained by rotating $y=x^2$ about y-axis, between $x=1$ and $x=2$, using the shell method.
- Explain in detail how you use triple integrals to find the volume of the solid.
- Let $f(x,y,z)=(x^2\cos (yz), \sin (x^2y)-x, e^{y \sin z})$. Compute the derivative matrix $Df$.
- Gauss's Theorem
- Green's Theorem