# Rose curve

In the figure below you will see a "flower" with a green leaf limited by a closed simple curve, calculate the area of the curve:

$$r(t)=(cos(5t)-cos(7t),sin(5t)+sin(7t)),$$

for $t\in (0,\pi/6)$.

You can use the trigonometric formula : $\cos u \cos v= 1/2\cos(u+v)+1/2\cos(u-v)$.

## Answer

Your curve is given by $r(t) = (x(t),\ y(t))$,

where

- $\red{x(t) = cos(5t) - cos(7t)}$
- $ \blue{y(t)= sin(5t) + sin(7t)}$

The area of the "petal" of interest will be given by

$$A = \int_{\pi/6}^0 \red{x(t)}\blue{ y'(t)} dt $$

Remark: The intervals of the integral is define by the orientation of the curve.

Then, we need to compute $\blue{y'(t)}$,

$$\blue{y'(t) = 5 cos(5 t) + 7 cos(7 t) }$$,

so that the integral become,

$$A = \int_{\pi/6}^0 \red{\left( cos(5t) - cos(7t) \right)} \cdot \blue{\left(5 cos(5 t) + 7 cos(7 t)\right)}dt $$

$$\Rightarrow A = -t+\frac{1}{2} \sin (2 t)+\frac{1}{4} \sin (10 t)+\frac{1}{12} \sin (12 t)-\frac{1}{4} \sin (14 t) \bigg|_{\pi/6}^0$$

$$\therefore A = \frac{\pi}{6}$$

- answered
- 1064 views
- $2.13

### Related Questions

- Second order directional derivative
- Explain partial derivatives v2
- Convergence of $\int_{1}^{\infty} e^{\sin(x)}\cdot\frac{\sin(x)}{x^2} $
- Is it possible to transform $f(x)=x^2+4x+3$ into $g(x)=x^2+10x+9$ by the given sequence of transformations?
- Finding absolute and relative extrema given an equation.
- Calculus - stationary points, Taylor's series, double integrals..
- Find $\lim _{x \rightarrow 0^{+}} \sqrt{x}\ln x$
- Integral of trig functions