Compute the surface integral $ \int_S (∇ × F) \cdot dS $ for $F = (x − y, x + y, ze^{xy})$ on the given surface
Answer
Note that the boundary of $S$ is given by $z=0$ and $4x^2+y^2=4$. Since the surface $S$ has upward orientation, the boundary of $S$, $C=\partial S$, has counterclockwise orientation when viewed from above. Thus, a parametrization of the boundary is given by
\[r(t)=(\cos t, 2\sin t, 0), 0 \leq t \leq 2\pi.\]
Applying the Stokes' Theorem we have
\[\iint_S \nabla \times F \cdot dS=\int_{C}F \cdot dr=\int_0^{2\pi}F(r(t))r'(t)dt\]
\[=\int_0^{2\pi} (\cos t -2\sin t,\cos t +2\sin t,0)\cdot (-\sin t, 2\cos t,0)dt\]
\[=\int_0^{2\pi}(-\cos t \sin t+2\sin^2 t+2\cos^2 t+4 \sin t \cos t)\]
\[=\int_0^{2\pi}2+3 \sin t \cos t dt=(2t+\frac{3}{2}\sin^2 t)|_0^{2\pi}\]
\[=(4\pi+\frac{3}{2}\sin^2 (2\pi))-(0+\frac{3}{2}\sin^2 (0))\]
\[=(4\pi+0)-(0+0)=4 \pi.\]

-
Please leave a comment if you have any questions.
- answered
- 1614 views
- $10.00
Related Questions
- Equation with partial derivative
- Joint PDF evaluated over a curve $P_{U,V}$
- Prove that $\int_{-\infty}^{\infty}\frac{\cos ax}{x^4+1}dx=\frac{\pi}{2}e^{-\frac{a}{\sqrt{2}}}(\cos \frac{a}{\sqrt{2}}+\sin \frac{a}{\sqrt{2}} )$
- Does $\lim_{(x,y)\rightarrow (0,0)}\frac{(x^2-y^2) \cos (x+y)}{x^2+y^2}$ exists?
- Reduction formulae
- Let $ X = x i+ y j+z k$, and $r=||X||$. Prove that $\nabla (\frac{1}{r})=-\frac{X}{r^3}.$
- Multivariable Calc: Vector equations, parametric equations, points of intersection
- Find $n$ such that $\lim _{x \rightarrow \infty} \frac{1}{x} \ln (\frac{e^{x}+e^{2x}+\dots e^{nx}}{n})=9$