Compute the surface integral $ \int_S (∇ × F) \cdot dS $ for $F = (x − y, x + y, ze^{xy})$ on the given surface
Answer
Note that the boundary of $S$ is given by $z=0$ and $4x^2+y^2=4$. Since the surface $S$ has upward orientation, the boundary of $S$, $C=\partial S$, has counterclockwise orientation when viewed from above. Thus, a parametrization of the boundary is given by
\[r(t)=(\cos t, 2\sin t, 0), 0 \leq t \leq 2\pi.\]
Applying the Stokes' Theorem we have
\[\iint_S \nabla \times F \cdot dS=\int_{C}F \cdot dr=\int_0^{2\pi}F(r(t))r'(t)dt\]
\[=\int_0^{2\pi} (\cos t -2\sin t,\cos t +2\sin t,0)\cdot (-\sin t, 2\cos t,0)dt\]
\[=\int_0^{2\pi}(-\cos t \sin t+2\sin^2 t+2\cos^2 t+4 \sin t \cos t)\]
\[=\int_0^{2\pi}2+3 \sin t \cos t dt=(2t+\frac{3}{2}\sin^2 t)|_0^{2\pi}\]
\[=(4\pi+\frac{3}{2}\sin^2 (2\pi))-(0+\frac{3}{2}\sin^2 (0))\]
\[=(4\pi+0)-(0+0)=4 \pi.\]
-
Please leave a comment if you have any questions.
- answered
- 2600 views
- $10.00
Related Questions
- Riemann Sums for computing $\int_0^3 x^3 dx$
- Compute the curl of $F=(x^2-\sin (xy), z-cox(y), e^{xy} )$
- Triple integral
- Surface Parameterization
- Explain in detail how you use triple integrals to find the volume of the solid.
- Evaluate $\iint_D (x^2+y^2)^{3/2}dxdy$
- Show that the distance between two nonparallel lines is given by $\frac{|(p_2-p_1)\cdot (a_1\times a_2)|}{|| a_2\times a_1||}$
- Use Green’s theorem to evaluate the line integral $\int_C (1+xy^2)dx-x^2ydy$ on the arc of a parabola