Equation with partial derivative
Find all the functions f that are continuously differentiable such that:
$\frac{\partial f}{\partial x}-3\frac{\partial f}{\partial y}=0 $
We were given a beneficial hint:
define: u(x,y)= ax + by
v(x.y)=cx+dy
f(x,y)=F(u(x,y),v(x,y))
ad-bc≠0
$\frac{\partial f}{\partial x}-3\frac{\partial f}{\partial y}=0 $
We were given a beneficial hint:
define: u(x,y)= ax + by
v(x.y)=cx+dy
f(x,y)=F(u(x,y),v(x,y))
ad-bc≠0
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1.6K
-
I'm not sure how you differentiate f(x,y) if f(x,y)=g((3x+y)/2), in which g is a single variable. Can you show it, please?
-
I added the explanation at the end.
-
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 541 views
- $10.00
Related Questions
- How to calculate a 3-dimensional Riemann integral
- Rose curve
- Prove that $\int_{-\infty}^{\infty}\frac{\cos ax}{x^4+1}dx=\frac{\pi}{2}e^{-\frac{a}{\sqrt{2}}}(\cos \frac{a}{\sqrt{2}}+\sin \frac{a}{\sqrt{2}} )$
- Evaluate the surface integral $\iint_{S}F \cdot dn$ over the given surface $S$
- Optimization Quick Problem
- Use Stokes's Theorem to evaluate $\iint_S ( ∇ × F ) ⋅ d S$ on the given surface
- Select the Correct Curve Sketches and Equations of Curves
- Convex subset