Equation with partial derivative
Find all the functions f that are continuously differentiable such that:
$\frac{\partial f}{\partial x}-3\frac{\partial f}{\partial y}=0 $
We were given a beneficial hint:
define: u(x,y)= ax + by
v(x.y)=cx+dy
f(x,y)=F(u(x,y),v(x,y))
ad-bc≠0
$\frac{\partial f}{\partial x}-3\frac{\partial f}{\partial y}=0 $
We were given a beneficial hint:
define: u(x,y)= ax + by
v(x.y)=cx+dy
f(x,y)=F(u(x,y),v(x,y))
ad-bc≠0
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1.6K
-
I'm not sure how you differentiate f(x,y) if f(x,y)=g((3x+y)/2), in which g is a single variable. Can you show it, please?
-
I added the explanation at the end.
-
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 517 views
- $10.00
Related Questions
- Calc 3 Question
- limit and discontinous
- Applications of Stokes' Theorem
- Gauss's Theorem
- Double Integrals
- Find the quadratic approximation of the following functions at the given points
- Use Stokes's Theorem to evaluate $\iint_S ( ∇ × F ) ⋅ d S$ on the given surface
- In what direction the function $f(x,y)=e^{x-y}+\sin (x+y^2)$ grows fastest at point $(0,0)$?