Determine the coordinate of two points.
Determine the coordinates of points $A$ and $B$ on a parabola $y^2=x$ such that the point $(2,1)$ is on the segment $\overline{AB}$ is as close as possible to the ordinate axis.
- closed
- 88 views
- $4.99
Related Questions
- Rewrite $\int_{\sqrt2}^{2\sqrt2} \int_{-\pi/2}^{-\pi/4} r^2cos(\theta)d\theta dr$ in cartesian coordinates (x,y)
- Find the area of the shaded region
- Find $\lim _{x \rightarrow 0^{+}} \sqrt{x}\ln x$
- Calculus word problem
- Prove that $1+\frac{1}{\sqrt{2}}+\dots+\frac{1}{\sqrt{n}} \leq 2 \sqrt{n}-1$
- Find the average of $f(x)=\sin x$ on $[0, \pi]$.
- Convergence of $\sum\limits_{n=1}^{\infty}(-1)^n\frac{n+2}{n^2+n+1}$
- Compute $\lim_{x \rightarrow 0} \frac{1-\arctan (\sin(x)+1)}{e^{x}-1}$