Is the $\mathbb{C}$-algebra $Fun(X,\mathbb{C})$ semi-simple?
Let $X$ be a finite set and consider the $\mathbb{C}$-algebra $Fun(X,\mathbb{C})$ of functions from $X$ to the complex numbers, with the obvious definitions of pointwise addition, multiplication and scalar multiplication. Is it semi-simple? In particular, how would we express it as a direct product of semi-simple algebras?
Jbuck
152
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Alessandro Iraci
1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 574 views
- $12.00
Related Questions
- Algebra Question
- A Problem on Affine Algebraic Groups and Hopf Algebra Structures
- Fluid Mechanics - algebra
- Absolute value functions.
- How do you do absolute value equations with inequalities?
- Find $x$ so that $\begin{pmatrix} 1 & 0 & c \\ 0 & a & -b \\ -\frac{1}{a} & x & x^2 \end{pmatrix}$ is invertible
- How do you prove that when you expand a binomial like $(a+b)^n$ the coefficients can be calculated by going to the n row in Pascal's triangle?
- Solving for two unknown angles, from two equations.