Is the $\mathbb{C}$-algebra $Fun(X,\mathbb{C})$ semi-simple?
Let $X$ be a finite set and consider the $\mathbb{C}$-algebra $Fun(X,\mathbb{C})$ of functions from $X$ to the complex numbers, with the obvious definitions of pointwise addition, multiplication and scalar multiplication. Is it semi-simple? In particular, how would we express it as a direct product of semi-simple algebras?
152
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1077 views
- $12.00
Related Questions
- Equation from Test
- Algebra Word Problem 2
- Prove that ${n\choose 2}2^{n-2}=\sum\limits_{k=2}^{n}{n\choose k}{k\choose 2}$ for all $n\geq 2$
- Find the coordinates of the point $(1,1,1)$ in Spherical coordinates
- Graph the pair of equations in the same rectangular coordinate system: Y=-2x ; y=-2
- Set theory question
-
The given equation is x² - 2mx + 2m - 1=0
Determine m. - Double absolute value equations.