Finding Binormal vector from the derivative of the Normal and Tangent.
Knowing that C is a regular, smooth curve parameterized by arc length.
It's $T'(0) = \frac{-1}{\sqrt10}(1,-1,0)$ and it's $N'(0) = \frac{-1}{\sqrt5}(0,0,-1)$ find the formula for $B(t)$ for all t. I have absolutely no idea what to do, I know that doing the cross product of $T'(0)$ with $N'(0)$ should give me $B'(0)$ but how do I go from there to $B(t)$?
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 685 views
- $4.00
Related Questions
- Prove that $\int_{-\infty}^{\infty}\frac{\cos ax}{x^4+1}dx=\frac{\pi}{2}e^{-\frac{a}{\sqrt{2}}}(\cos \frac{a}{\sqrt{2}}+\sin \frac{a}{\sqrt{2}} )$
- Line Integral
- Show that $\int_\Omega \Delta f g = \int_\Omega f \Delta g$ for appropriate boundary conditions on $f$ or $g$
- Optimization of a multi-objective function
- Integral of the fundamentla solution of the heat equation
- Calculate $\iint_R (x+y)^2 e^{x-y}dx dy$ on the given region
- Double Integrals
- Partial Derivatives and Graphing Functions
The bounty is a bit low.