Finding Binormal vector from the derivative of the Normal and Tangent.
Knowing that C is a regular, smooth curve parameterized by arc length.
It's $T'(0) = \frac{-1}{\sqrt10}(1,-1,0)$ and it's $N'(0) = \frac{-1}{\sqrt5}(0,0,-1)$ find the formula for $B(t)$ for all t. I have absolutely no idea what to do, I know that doing the cross product of $T'(0)$ with $N'(0)$ should give me $B'(0)$ but how do I go from there to $B(t)$?
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 741 views
- $4.00
Related Questions
- Evaluate $\iiint_W z dx dy dz$ on the given region
- Let $z = f(x − y)$. Show that $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$
- Partial Derivatives and Graphing Functions
- Conservative Vector Fields
- Optimization problem
- Evaluate $\int_C (2x^3-y^3)dx+(x^3+y^3)dy$, where $C$ is the unit circle.
- Prove that $\int _0^{\infty} \frac{1}{1+x^{2n}}dx=\frac{\pi}{2n}\csc (\frac{\pi}{2n})$
- Does $\lim_{(x,y)\rightarrow (0,0)}\frac{(x^2-y^2) \cos (x+y)}{x^2+y^2}$ exists?
The bounty is a bit low.