Three questions on the annihilator
The three questions are:
(a) Prove that if $ U ⊂ V$ is a linear subspace then $U^\circ $ is also a linear subspace of $V^*$.
(b) If $f \in V^*$ is a non-zero element how is $(Span(f))^o $ related to $ker f$?
(c) When $V = R^3$, describe the subspace $(Span(\epsilon^2 + \epsilon^3))^\circ$.
More info on the annihilator is found in the image.
I think for question (b) you need to show that $\Psi(ker(f))=(Span(f))^\circ$ (and you possibly need the Lemma in the image as well).
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
Erdos
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 809 views
- $10.00
Related Questions
- Geometric Representation Problem
- Figure 1 shows two points A and B with a straight line drawn through them.
- Geometric Representation Problem
- How do I negate the effect that the rotation of a plane has on a rectangle?
- I am looking for a formula to calculate the radii of an ellipsoid from coordinates of non-coplanar locii on its surface.
- A trigonometry question
- Probability that the distance between two points on the sides of a square is larger than the length of the sides
- Pulley System