University Analysis 2 Integral Inequality
Let $f: [a,b] \rightarrow \mathbb{R}$ continiously differentiable and $f(a)=f(b)=0$. Prove that
\[ \int_{a}^{b}|f(x)f'(x)|\mathrm{d}x ≤ \frac{b-a}{2} \int_{a}^{b}f'(x)²\mathrm{d}x\]
1 Answer
We can prove this by only assuming that $f(a)=0$. By Holder's inequality we have
$$\int_a^b|f(x)f'(x)|\mathrm{d}x \le \left( \int_{a}^{b}|f(x)|^2 \mathrm{d}x \right)^{\frac{1}{2}}\left( \int_{a}^{b}|f'(x)|^2 \mathrm{d}x \right)^{\frac{1}{2}}\tag{1}$$
Since $f(a)=0$, $$f(x)=\int_{a}^{x}f'(t)\mathrm{d}t \tag{2}$$
From (2) we can write
$$|f(x)| \le \int_a^x|f'(t)|\mathrm{d}t \le (x-a)^{\frac{1}{2}}\left( \int_a^x |f'(t)|^2 \mathrm{d}t \right)^{1/2}$$
Thus
$$\int_a^b|f(x)|^2\mathrm{d}x \le \int_a^b(x-a)\int_a^x|f'(t)|^2\mathrm{d}t\mathrm{d}x \le \int_a^b |f'(t)|^2\mathrm{d}t\int_a^b(x-a)\mathrm{d}x $$
\[=\int_a^b |f'(t)|^2\mathrm{d}t \cdot (\frac{b-a}{2})^2\]
Hence
$$(\int_a^b|f(x)|^2\mathrm{d}x)^{\frac{1}{2}} \le (\int_a^b |f'(t)|^2\mathrm{d}t)^{\frac{1}{2}}(\frac{b-a}{2}) \tag{3}.$$
Substituting (3) in (1) we get
$$\int_a^b|f(x)f'(x)|\mathrm{d}x \le \frac{b-a}{2} \int_{a}^{b}|f'(x)|^2 \mathrm{d}x.$$

-
This took me a while to figure out. Please consider offering bounties or leaving a tip, otherwise your questions may not get answered.
- 1 Answer
- 169 views
- Pro Bono
Related Questions
- Fourier series
- Find $n$ such that $\lim _{x \rightarrow \infty} \frac{1}{x} \ln (\frac{e^{x}+e^{2x}+\dots e^{nx}}{n})=9$
- Need help with finding equation of the plane containing the line and point. Given the symmetric equation.
- Under the hood of Hard Margin SVM
- Find the area under the graph of $y=\sin x$ between $x=0$ and $x=\pi$.
- Compute $\lim_{x \rightarrow 0} \frac{1-\arctan (\sin(x)+1)}{e^{x}-1}$
- Use the equation to show the maximum, minimum, and minimum in the future.
- Two calculus questions
This is a very tricky question, and should come with a bounty.