A telephone line hanging between two poles.
A telephone line hangs between two poles 14 meters apart in the shape of a catenary $y = 20cosh(\frac{x}{20})-15 $ , where x and y are measured in meters. Find the length of telephone wire needed between the two poles. Note that the formula for arc length is $L = \int_{a}^{b} \sqrt{1+f' (x))^2}dx$ , that coshx and sinhx are each others derivative, and that $cosh^{2} x-sinh^{2} x=1$ .
73
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
649
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1390 views
- $7.00
Related Questions
- Integrate $\int e^{\sqrt{x}}dx$
- Integration
- Reduction formulae
- Use Rouche’s Theorem to show that all roots of $z ^6 + (1 + i)z + 1 = 0$ lines inside the annulus $ \frac{1}{2} \leq |z| \leq \frac{5}{4}$
- Prove that $tan x +cot x=sec x csc x$
- How to filter data with the appearance of a Sine wave to 'flattern' the peaks
- Analyzing the Domain and Range of the Function $f(x) = \frac{1}{1 - \sin x}$
- Integrate $\int \frac{1}{x^2+x+1}dx$