A telephone line hanging between two poles.
A telephone line hangs between two poles 14 meters apart in the shape of a catenary $y = 20cosh(\frac{x}{20})-15 $ , where x and y are measured in meters. Find the length of telephone wire needed between the two poles. Note that the formula for arc length is $L = \int_{a}^{b} \sqrt{1+f' (x))^2}dx$ , that coshx and sinhx are each others derivative, and that $cosh^{2} x-sinh^{2} x=1$ .
73
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
649
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1428 views
- $7.00
Related Questions
- In what direction the function $f(x,y)=e^{x-y}+\sin (x+y^2)$ grows fastest at point $(0,0)$?
- Two calculus questions
- Obtaining the absolute velocity of a moving train based on angle of raindrops with respect to vertical axis
- Evaluate $\frac{1}{2 \pi i}\int_{|x|=1} \frac{z^{11}}{12z^{12}-4z^9+2z^6-4z^3+1}dz$
- Can we use the delta-ep def of a limit to find a limiting value?
- Under the hood of Hard Margin SVM
- Calculus word problem
- Evaluate $\int \ln(\sqrt{x+1}+\sqrt{x}) dx$