A telephone line hanging between two poles.
A telephone line hangs between two poles 14 meters apart in the shape of a catenary $y = 20cosh(\frac{x}{20})-15 $ , where x and y are measured in meters. Find the length of telephone wire needed between the two poles. Note that the formula for arc length is $L = \int_{a}^{b} \sqrt{1+f' (x))^2}dx$ , that coshx and sinhx are each others derivative, and that $cosh^{2} x-sinh^{2} x=1$ .
73
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
649
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1349 views
- $7.00
Related Questions
- Calculus - 2nd order differential equations and partial derivatives
- Integrate $\int_0^1\int_{\sqrt{x}}^{1}e^{y^3}dydx$
- Calculus Question
- Help formulating sine function
- Urgency Can you help me Check these Applications of deritive.
- Prove that $\int_{-\infty}^{\infty}\frac{\cos ax}{x^4+1}dx=\frac{\pi}{2}e^{-\frac{a}{\sqrt{2}}}(\cos \frac{a}{\sqrt{2}}+\sin \frac{a}{\sqrt{2}} )$
- Determine values of a,b and c so that f(0)=0 and f(8)=0 and f'(2)= 16
- Help