Show that $\psi:L(E,L(E,F))\rightarrow L^2(E,F)$ given by $[\psi(T)](u,v)=[T(u)](v)$ is a linear homeomorphism
Let $E,F$ be Banach spaces. Denote by $L^2(E,F)$ the space of continuous bilinear applications $T:E^2\rightarrow F$ with norm $||T||=\underset {||x_i||_E≤1}{sup}{||T(x_1,x_2)||_F}$.
Show that $\psi:L(E,L(E,F))\rightarrow L^2(E,F)$ given by $[\psi(T)](u,v)=[T(u)](v)$ is a linear homeomorphism, first showing that $L^2(E,F)$ is Banach and then using the open mapping theorem.
18
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
133
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1189 views
- $30.00
Related Questions
- Find limit
- Rewrite $\int_{\sqrt2}^{2\sqrt2} \int_{-\pi/2}^{-\pi/4} r^2cos(\theta)d\theta dr$ in cartesian coordinates (x,y)
- Use Rouche’s Theorem to show that all roots of $z ^6 + (1 + i)z + 1 = 0$ lines inside the annulus $ \frac{1}{2} \leq |z| \leq \frac{5}{4}$
- Urgency Can you help me Check these Applications of deritive.
- There are two questions about calculus
- Is $\int_0^{\infty}\frac{x+3}{x^2+\cos x}$ convergent?
- Write a Proof
- Hs level math (problem solving) *der