Stoke's Theorem
In the next problem you must use and explain in detail how do you use the Stoke's Theorem to get to the answer. It should also include an analysis on the orientation of the surface and its boundary.
Find the work done by the vector field $F(x,y,z)=(-y,x,0)$ when displacing a particle on the boundary of the surface parameterized by $p(r,\theta)=(r(2+cos \theta)cos\theta, r(2+cos \theta)sin \theta, sin \theta)$ where $0 \leq r<1,0<\theta<2\pi$.
39
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
3.6K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 845 views
- $10.00
Related Questions
- Find the volume of a 3D region bounded by two surfaces
- Use Green’s theorem to compute $\int_C x^2 ydx − xy^2 dy$ where $C$ is the circle $x^2 + y ^2 = 4$ oriented counter-clockwise.
- Double Integrals
- Compute the curl of $F=(x^2-\sin (xy), z-cox(y), e^{xy} )$
- Finding Binormal vector from the derivative of the Normal and Tangent.
- Compounding interest of principal P, where a compounding withdrawal amount W get withdrawn from P before each compounding of P.
- Does $\lim_{(x,y)\rightarrow (0,0)}\frac{(x^2-y^2) \cos (x+y)}{x^2+y^2}$ exists?
- Find $n$ such that $\lim _{x \rightarrow \infty} \frac{1}{x} \ln (\frac{e^{x}+e^{2x}+\dots e^{nx}}{n})=9$
Low bounty!
Bounty seems too low.
The range of theta looks suspicious too, it probably goes from 0 to 2pi.
very suspicious. also, p(.) has only 2 components, how's that a surface in R^3?
Please double check the statement of your question. There seems to be typoes.
Ok, I changed it.
There is still a typo on the first component of p(r,theta)