Existence of golobal minimum point for continuous functions on $\mathbb{R}^2$
Let
1. $g:[0,\infty)\rightarrow \mathbb{R}$ such that $\lim_{t\rightarrow \infty}g(t)=\infty$
2. $f: \mathbb{R}^2\rightarrow \mathbb{R}$ continues such that for all (x,y): f(x,y) $\geq$ g($\sqrt{x^2+y^2} $ ).
Prove that f has a global minimum point.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
3.7K
-
In line 7 I'm not sure how f(x min,y min) can be little/equal to c if for all (x,y) f(x,y)>=g((x^2+y^2)^0.5) and g>c?
-
Nevermind. I got it
-
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1073 views
- $10.00
Related Questions
- Prove that $\int_{-\infty}^{\infty}\frac{\cos ax}{x^4+1}dx=\frac{\pi}{2}e^{-\frac{a}{\sqrt{2}}}(\cos \frac{a}{\sqrt{2}}+\sin \frac{a}{\sqrt{2}} )$
- Prove that $f$ is a diffeomorphism $C^∞$, that maps... (More inside)
- Use Green’s theorem to evaluate the line integral $\int_C (1+xy^2)dx-x^2ydy$ on the arc of a parabola
- limit and discontinous
- Evaluate $\int ...\int_{R_n}dV_n(x_1^2 + x_2^2 + ... + x_n^2)$ , where $n$ and $R_n$ is defined in the body of this question.
- Optimization Quick Problem
- Calc 3 Question
- Let $ X = x i+ y j+z k$, and $r=||X||$. Prove that $\nabla (\frac{1}{r})=-\frac{X}{r^3}.$
Is g continuous?
We don't know. Any way its not a given
Got it! No assumption on g!