Existence of golobal minimum point for continuous functions on $\mathbb{R}^2$
Let
1. $g:[0,\infty)\rightarrow \mathbb{R}$ such that $\lim_{t\rightarrow \infty}g(t)=\infty$
2. $f: \mathbb{R}^2\rightarrow \mathbb{R}$ continues such that for all (x,y): f(x,y) $\geq$ g($\sqrt{x^2+y^2} $ ).
Prove that f has a global minimum point.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
3.7K
-
In line 7 I'm not sure how f(x min,y min) can be little/equal to c if for all (x,y) f(x,y)>=g((x^2+y^2)^0.5) and g>c?
-
Nevermind. I got it
-
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 999 views
- $10.00
Related Questions
- Evaluate $\int \ln(\sqrt{x+1}+\sqrt{x}) dx$
- Compute $\iint_D \frac{dx dy}{\sqrt{1+x+2y}}$ on $D=[0,1]\times [0,1]$
- Scalar fields, potentia
- Double, Triple, and Change in Variables of Integrals Problems
- Suppose $u \in C^2(\R^n)$ is a harmonic function. Prove that $v=|\nabla u|^2$ is subharmonic, i.e. $-\Delta v \leq 0$
- Compounding interest of principal P, where a compounding withdrawal amount W get withdrawn from P before each compounding of P.
- Find the quadratic approximation of the following functions at the given points
- Show that the distance between two nonparallel lines is given by $\frac{|(p_2-p_1)\cdot (a_1\times a_2)|}{|| a_2\times a_1||}$
Is g continuous?
We don't know. Any way its not a given
Got it! No assumption on g!