Evaluate$\int \sqrt{\tan x}dx$
Answer
Let $$A=\int\sqrt{\tan x}\,\mathrm dx$$ $$B=\int\sqrt{\cot x}\,\mathrm dx$$
Then
\[A+B=\int\left(\sqrt{\tan x}+\sqrt{\cot x}\right) dx=\sqrt{2} \int\frac{\sin x+\cos x}{\sqrt{\sin2x}}\mathrm dx\]
\[ =\sqrt2\int\frac{(\sin x-\cos x)'}{\sqrt{1-(\sin x-\cos x)^2}}\,\mathrm dx =\sqrt2\int\frac{1}{\sqrt{1-u^2}}\,\mathrm du\]
\[ =\sqrt2\sin^{-1}u =\sqrt2\sin^{-1}(\sin x-\cos x).\]
Also
\[A-B=\int\left(\sqrt{\tan x}-\sqrt{\cot x}\right)\,\mathrm dx =\sqrt2\int\frac{\sin x-\cos x}{\sqrt{\sin2x}} \,\mathrm dx\]
\[ =-\sqrt2\int\frac{(\sin x+\cos x)'}{\sqrt{(\sin x+\cos x)^2-1}}\,\mathrm dx =-\sqrt2\int\frac{\mathrm du}{\sqrt{u^2-1}}\]
\[=-\sqrt2\cosh^{-1}(\sin x+\cos x) \]
Thus we get
\[A=\int\sqrt{\tan x} dx=\frac{(A-B)+(A+B)}2\]
\[= \frac{\sqrt2}2(\sin^{-1}(\sin x-\cos x)-\cosh^{-1}(\sin x+\cos x)) + C.\]
Note than you also get
\[B=\int\sqrt{\cot x} dx=-\frac{(A-B)-(A+B)}2\]
\[=- \frac{\sqrt2}2(\sin^{-1}(\sin x-\cos x)-\cosh^{-1}(\sin x+\cos x)) + C.\]
- answered
- 608 views
- $3.00
Related Questions
- Prove that $\frac{1}{1-\sin x}-\frac{1}{1+\sin x}=2 \tan x \sec x$
- Calculus - functions, limits, parabolas
- Is the infinite series $\sum_{n=1}^{\infty}\frac{1}{n \ln n}$ convergent or divergent?
- A bicycle with 18in diameter wheels has its gears set so that the chain has a 6 in. Radius on the front sprocket and 4 in radius on the rear sprocket. The cyclist pedals at 180 rpm.
- Explain what the problem means in laymens terms.
- Math Creative Project
- Solve the attached problem
- Is it possible to transform $f(x)=x^2+4x+3$ into $g(x)=x^2+10x+9$ by the given sequence of transformations?