Find the eigenvalues of $\begin{pmatrix} -1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & -1 \end{pmatrix} $
Find the eigenvalues of the 3*3 matrix:
$$\begin{pmatrix} -1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & -1 \end{pmatrix} $$
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment

4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 903 views
- $2.00
Related Questions
- Find eigenvalues and eigenvectors of $\begin{pmatrix} -3 & 0 & 2 \\ 1 &-1 &0\\ -2 & -1& 0 \end{pmatrix} $
- Question on Subspaces
- Linear algebra
- The Span and Uniqueness of Solutions in a Parametric Matrix
- Show that $tr(\sqrt{\sqrt A B \sqrt A})\leq 1$ , where both $A$ and $B$ are positive semidefinite with $tr(A)=tr(B)=1.$
- Prove that $V={(𝑥_1,𝑥_2,⋯,𝑥_n) \in ℝ^n ∣ 𝑥_1+𝑥_2+...+𝑥_{𝑛−1}−2𝑥_𝑛=0}\}$ is a subspace of $\R^n$.
- Help with linear algebra HW. Please show work!
- Consider the vector v = (3, 4, 5)^T, calculate the orthogonal projection