Connected rates of change calculus.
I'm struggling with connected rates of change $\frac{dy}{dt} =\frac{dy}{dx}\times \frac{dx}{dt}$ I'll give you an example of the type of questions I'm struggling with and I'll explain what I don't understand about the question.
Question: Variables x and y are connected by the equation
$y=x+\sqrt{x-5} $.
Given that x increases at a rate of 0.1 units per second. Find the rate of change of y when x = 9.
When I initially read this question, it feels like the question is asking me to do $y=(9+ \sqrt{9-5} )\times 0.1 = 1.1$ which is incorrect, so my first question is what is the question asking and how does it have anything to do with a curve/tangent?
My second question is in my book, it tells me to solve the problem like this
$\frac{dy}{dx} = 1+\tfrac{1}{2\sqrt{x-5} } $
$\frac{dx}{dt} =0.1$
$1+\tfrac{1}{2\sqrt{9-5}}\times 0.1 =0.125$
why is $\tfrac{dx}{dt} = 0.1 $ because my understanding of differentiation is that for instance if you have $y=x^3 $ and then you find the derivative of y with respect to x what it's asking is the gradient of y at any given value of x so shouldn't that mean that $\tfrac{dx}{dt}$ is asking for the value of x at any given value of t rather than an actual number if that makes sense.
If you don't understand exactly what I mean I'll try to explain further.
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
- answered
- 1874 views
- $20.00
Related Questions
- Evaluate$\int \sqrt{\tan x}dx$
- Application of Integrals
- Prove that $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$, under the given conditions on $f(x)$
- Prove that $1+\frac{1}{\sqrt{2}}+\dots+\frac{1}{\sqrt{n}} \leq 2 \sqrt{n}-1$
- Use Rouche’s Theorem to show that all roots of $z ^6 + (1 + i)z + 1 = 0$ lines inside the annulus $ \frac{1}{2} \leq |z| \leq \frac{5}{4}$
- Solve this business calculus problem please.
- Find $\int\frac{dx}{2x^2-2x+1}$
- Why does $ \sum\limits_{n=1}^{\infty } 2^{2n} \times \frac{(n!)^2}{n(2n+1)(2n)!} =2 $ ?