Connected rates of change calculus.
I'm struggling with connected rates of change $\frac{dy}{dt} =\frac{dy}{dx}\times \frac{dx}{dt}$ I'll give you an example of the type of questions I'm struggling with and I'll explain what I don't understand about the question.
Question: Variables x and y are connected by the equation
$y=x+\sqrt{x-5} $.
Given that x increases at a rate of 0.1 units per second. Find the rate of change of y when x = 9.
When I initially read this question, it feels like the question is asking me to do $y=(9+ \sqrt{9-5} )\times 0.1 = 1.1$ which is incorrect, so my first question is what is the question asking and how does it have anything to do with a curve/tangent?
My second question is in my book, it tells me to solve the problem like this
$\frac{dy}{dx} = 1+\tfrac{1}{2\sqrt{x-5} } $
$\frac{dx}{dt} =0.1$
$1+\tfrac{1}{2\sqrt{9-5}}\times 0.1 =0.125$
why is $\tfrac{dx}{dt} = 0.1 $ because my understanding of differentiation is that for instance if you have $y=x^3 $ and then you find the derivative of y with respect to x what it's asking is the gradient of y at any given value of x so shouldn't that mean that $\tfrac{dx}{dt}$ is asking for the value of x at any given value of t rather than an actual number if that makes sense.
If you don't understand exactly what I mean I'll try to explain further.
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
- answered
- 2292 views
- $20.00
Related Questions
- Is $\int_0^1 \frac{\cos x}{x \sin^2 x}dx$ divergent or convergent?
- Explain partial derivatives.
- There are two questions about calculus
- Use Green’s theorem to compute $\int_C x^2 ydx − xy^2 dy$ where $C$ is the circle $x^2 + y ^2 = 4$ oriented counter-clockwise.
- Given $|f(x) - f(y)| \leq M|x-y|^2$ , prove that f is constant.
- Does $\lim_{(x,y)\rightarrow (0,0)}\frac{(x^2-y^2) \cos (x+y)}{x^2+y^2}$ exists?
- Two short calculus questions - domain and limits
- Prove that ${n\choose 2}2^{n-2}=\sum\limits_{k=2}^{n}{n\choose k}{k\choose 2}$ for all $n\geq 2$