Vector-valued functions and Jacobian matrix
Since multivariable vector-valued functions are not covered in Stewart's Calculus I would like to clarify if I understand them correctly. So multivariable vector-valued function looks like this, right? $$f(x,y) = v<f1(x,y),f2(x,y)>$$
And Jacobian matrix would look like:
$$\begin{bmatrix} f1_x(x,y) & f1_y(x,y) \\ f2_x(x,y) & f2_y(x,y) \end{bmatrix} $$
Right?
Babaduras
106
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Kav10
1.9K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 549 views
- $5.00
Related Questions
- Calculus on Submanifolds Challenge
- Calculus 1
- Rewrite $\int_{\sqrt2}^{2\sqrt2} \int_{-\pi/2}^{-\pi/4} r^2cos(\theta)d\theta dr$ in cartesian coordinates (x,y)
- Solve the attached problem
- Calc limit problem
- Epsilon-delta definitoon of continuity for $f : x → x^3$
- Find $n$ such that $\lim _{x \rightarrow \infty} \frac{1}{x} \ln (\frac{e^{x}+e^{2x}+\dots e^{nx}}{n})=9$
- Is $\sum_{i=1}^{\infty}\arctan (\frac{n+1}{n^2+5})$ convergent or divergent?