Vector-valued functions and Jacobian matrix
Since multivariable vector-valued functions are not covered in Stewart's Calculus I would like to clarify if I understand them correctly. So multivariable vector-valued function looks like this, right? $$f(x,y) = v<f1(x,y),f2(x,y)>$$
And Jacobian matrix would look like:
$$\begin{bmatrix} f1_x(x,y) & f1_y(x,y) \\ f2_x(x,y) & f2_y(x,y) \end{bmatrix} $$
Right?
106
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
2.1K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1157 views
- $5.00
Related Questions
- Let $f:U\subset\mathbb{R} ^3\rightarrow \mathbb{R} ^2$ given by $f(x,y,z)=(sin(x+z)+log(yz^2) ; e^{x+z} +yz)$ where $U = { (x, y, z) ∈ R^3| y, z > 0 }.$ Questions Inside.
- Find the absolute extrema of $f(x,y) = x^2 - xy + y^2$ on $|x| + |y| \leq 1$.
- Find the composition function $fog(x)$
- Prove that $\int _0^{\infty} \frac{1}{1+x^{2n}}dx=\frac{\pi}{2n}\csc (\frac{\pi}{2n})$
- Calculus problems
- Riemann Sums for computing $\int_0^3 x^3 dx$
- I need help with the attched problem about definite integrals
- Does $\lim_{(x,y)\rightarrow (0,0)}\frac{(x^2-y^2) \cos (x+y)}{x^2+y^2}$ exists?