Central Limit Theorem question
Suppose that $\lbrace X_i \rbrace$ are IID continuous random variables with the following common pdf:
$$f(x)=\left\{\begin{matrix} 2-2x & 0\leq x\leq1 \\ 0 & else \end{matrix}\right.$$
Let $Z$ be a standard normal random variable. Use the Central Limit Theorem to find the number $a$ so that
$$\lim_{n\rightarrow \infty}P\left ( \frac{1}{n} \sum_{i=1}^{n} X_i\leq\frac{1}{3}+\frac{2}{\sqrt n} \right ) = P(Z\leq a) $$
Ian Dumais
58
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Martin
1.5K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 575 views
- $10.00
Related Questions
- Find the maximum likelihood estimate
- Operational research : queueing theory
- What would be the probability of "breaking the bank" in this 1985 Blackjack game? (Details in body)
- Calculating Dependant Probability of Multiple Events
- Probabilities
-
Poker Outcomes and Variance: Calculating Likelihood of an Observed Outcome
- Questions for Statistics Project
- Probability and Statistics problem