$\lim_{x \rightarrow 0}\frac{1}{x^2 \log x}$
1 Answer
We can use L'hopital's rule
\[\lim_{x \rightarrow 0}\frac{1}{x^2 \log x} =\lim_{x \rightarrow 0} \frac{1}{\frac{\log x}{\frac{1}{x^2}}}=\frac{1}{\lim_{x \rightarrow 0} \frac{\frac{1}{x}}{\frac{-2}{x^3}}}=\frac{1}{\lim_{x \rightarrow 0} -\frac{1}{2}x^2}=-\infty.\]

4.8K
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 427 views
- Pro Bono
Related Questions
- Optimization problem
- Calculus - functions, limits, parabolas
- Prove that $\int_{-\infty}^{\infty}\frac{\cos ax}{x^4+1}dx=\frac{\pi}{2}e^{-\frac{a}{\sqrt{2}}}(\cos \frac{a}{\sqrt{2}}+\sin \frac{a}{\sqrt{2}} )$
- Calculus - Differentiation
- Calculus - 2nd order differential equations and partial derivatives
- Evaluate $\int \frac{dx}{x \sqrt{1+\ln x}}$
- Find the limit as x-->0 for y = (e^x- 1)/[sin(nx)]
- Let $f:U\subset\mathbb{R} ^3\rightarrow \mathbb{R} ^2$ given by $f(x,y,z)=(sin(x+z)+log(yz^2) ; e^{x+z} +yz)$ where $U = { (x, y, z) ∈ R^3| y, z > 0 }.$ Questions Inside.