$\lim_{x \rightarrow 0}\frac{1}{x^2 \log x}$
1 Answer
We can use L'hopital's rule
\[\lim_{x \rightarrow 0}\frac{1}{x^2 \log x} =\lim_{x \rightarrow 0} \frac{1}{\frac{\log x}{\frac{1}{x^2}}}=\frac{1}{\lim_{x \rightarrow 0} \frac{\frac{1}{x}}{\frac{-2}{x^3}}}=\frac{1}{\lim_{x \rightarrow 0} -\frac{1}{2}x^2}=-\infty.\]
4.8K
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 473 views
- Pro Bono
Related Questions
- Show that the MLE for $\sum_{i=1}^{n}\left(\ln{2x_i} - 2\ln{\lambda} - \left(\frac{x_i}{\lambda}\right)^2\right)$ is $\hat{\lambda} = \sqrt{\sum_{i=1}^{n}\frac{x_i^2}{n}}$.
- Custom Solutions to Stewart Calculus, Integral
- How to parameterize an equation with 3 variables
- Epsilon delta 2
- Calculus helped needed asap !!
- Velocity of a rock
- Evaluate the integral $\int_{-\infty}^{+\infty}e^{-x^2}dx$
- Use Green’s theorem to evaluate the line integral $\int_C (1+xy^2)dx-x^2ydy$ on the arc of a parabola