$\lim_{x \rightarrow 0}\frac{1}{x^2 \log x}$
1 Answer
We can use L'hopital's rule
\[\lim_{x \rightarrow 0}\frac{1}{x^2 \log x} =\lim_{x \rightarrow 0} \frac{1}{\frac{\log x}{\frac{1}{x^2}}}=\frac{1}{\lim_{x \rightarrow 0} \frac{\frac{1}{x}}{\frac{-2}{x^3}}}=\frac{1}{\lim_{x \rightarrow 0} -\frac{1}{2}x^2}=-\infty.\]

4.8K
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 415 views
- Pro Bono
Related Questions
- Does $\lim_{n \rightarrow \infty} \frac{2^{n^2}}{n!}$ exist?
- Prove that $\lim_{n\rightarrow \infty} \int_{[0,1]^n}\frac{|x|}{\sqrt{n}}=\frac{1}{\sqrt{3}}$
- Need help with integrals (Urgent!)
- Calculate the antiderivative of trigonometric functions
- Calculus on Submanifolds Challenge
- Find the volume of the solid obtained by rotating $y=x^2$ about y-axis, between $x=1$ and $x=2$, using the shell method.
- Calculus Question
- Optimization problem