$\lim_{x \rightarrow 0}\frac{1}{x^2 \log x}$
1 Answer
We can use L'hopital's rule
\[\lim_{x \rightarrow 0}\frac{1}{x^2 \log x} =\lim_{x \rightarrow 0} \frac{1}{\frac{\log x}{\frac{1}{x^2}}}=\frac{1}{\lim_{x \rightarrow 0} \frac{\frac{1}{x}}{\frac{-2}{x^3}}}=\frac{1}{\lim_{x \rightarrow 0} -\frac{1}{2}x^2}=-\infty.\]
4.8K
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 485 views
- Pro Bono
Related Questions
- A rectangular garden plot is to be fenced off along the property line.
- taking business calc and prin of finance class should i buy calculator in body
- Calculus 2 / Calculate the surface of F
- Please answer the attached question about Riemann integrals
- Use the equation to show the maximum, minimum, and minimum in the future.
- Beginner Differential Equations - Growth Rate Question
- Calculus Questions
- Find and simplify quotient