$\lim_{x \rightarrow 0}\frac{1}{x^2 \log x}$
1 Answer
We can use L'hopital's rule
\[\lim_{x \rightarrow 0}\frac{1}{x^2 \log x} =\lim_{x \rightarrow 0} \frac{1}{\frac{\log x}{\frac{1}{x^2}}}=\frac{1}{\lim_{x \rightarrow 0} \frac{\frac{1}{x}}{\frac{-2}{x^3}}}=\frac{1}{\lim_{x \rightarrow 0} -\frac{1}{2}x^2}=-\infty.\]
Erdos
4.7K
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 262 views
- Pro Bono
Related Questions
- Find equation of the tangent line using implicit differentiation
- Differentiate $f(x)=\int_{\sqrt{x}}^{\sin^2 x}\arctan (1+e^{t^2})dt$
- Explain parameter elimination for complex curves v2
- Optimization of a multi-objective function
- Show that the MLE for $\sum_{i=1}^{n}\left(\ln{2x_i} - 2\ln{\lambda} - \left(\frac{x_i}{\lambda}\right)^2\right)$ is $\hat{\lambda} = \sqrt{\sum_{i=1}^{n}\frac{x_i^2}{n}}$.
- Work problem involving pumping water from tank
- Integrate $\int e^{\sqrt{x}}dx$
- Prove that ${n\choose 2}2^{n-2}=\sum\limits_{k=2}^{n}{n\choose k}{k\choose 2}$ for all $n\geq 2$