$\lim_{x \rightarrow \frac{\pi}{2}} \frac{(\frac{\pi}{2}-x)^2}{\cos x}$

$\lim_{x \rightarrow \frac{\pi}{2}} \frac{(\frac{\pi}{2}-x)^2}{\cos x}$

1 Answer

We can L'hopital's rule
\[\lim_{x \rightarrow \frac{\pi}{2}} \frac{(\frac{\pi}{2}-x)^2}{\cos x}=\lim_{x \rightarrow \frac{\pi}{2}} \frac{-2(\frac{\pi}{2}-x)}{-\sin x}=\pm \infty.\]

Indeed the limit does not exists. 

Erdos Erdos
4.6K
Join Matchmaticians Affiliate Marketing Program to earn up to 50% commission on every question your affiliated users ask or answer.