$\lim_{x \rightarrow \frac{\pi}{2}} \frac{(\frac{\pi}{2}-x)^2}{\cos x}$
1 Answer
We can L'hopital's rule
\[\lim_{x \rightarrow \frac{\pi}{2}} \frac{(\frac{\pi}{2}-x)^2}{\cos x}=\lim_{x \rightarrow \frac{\pi}{2}} \frac{-2(\frac{\pi}{2}-x)}{-\sin x}=\pm \infty.\]
Indeed the limit does not exists.
4.8K
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- 1 Answer
- 424 views
- Pro Bono
Related Questions
- Maximum gradient of function within a domain
- Evaluate $\int_C (2x^3-y^3)dx+(x^3+y^3)dy$, where $C$ is the unit circle.
- In what direction the function $f(x,y)=e^{x-y}+\sin (x+y^2)$ grows fastest at point $(0,0)$?
- Find $lim_{x \rightarrow 0^+} x^{\ln x}$
- Evluate $\int_{|z|=3}\frac{1}{z^5(z^2+z+1)}\ dz$
- Show that the distance between two nonparallel lines is given by $\frac{|(p_2-p_1)\cdot (a_1\times a_2)|}{|| a_2\times a_1||}$
- Velocity of a rock
- Derivatives