Solution to Stewart Calculus
Answer
You should use the substitution rule. Let $u=e^z +z$. Then we have $$ du=(e^z +z)' dz=(e^z +1)dz$$ At $z=0$ we have $u=e^0 +0=1$ and at $z=1$ we have $u=e^1 +1=e+1$. So, after the substitution, the integral becomes $$\int _0 ^1 \frac {e^z +1}{e^z +z}\,dz=\int _1 ^{e+1}\frac{du}{u}=\ln|u|\,\Big]_1 ^{e+1} =\ln(e+1)-\ln(1)=\ln(e+1)-0=\ln(e+1)$$
1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- accepted
- 2350 views
- $10.00
Related Questions
- Two calculus questions
- Show that the MLE for $\sum_{i=1}^{n}\left(\ln{2x_i} - 2\ln{\lambda} - \left(\frac{x_i}{\lambda}\right)^2\right)$ is $\hat{\lambda} = \sqrt{\sum_{i=1}^{n}\frac{x_i^2}{n}}$.
- Find the exact form (Pre-Calculus)
- Evaluate $I(a) = \int_{0}^{\infty}\frac{e^{-ax^2}-e^{-x^2}}{x}dx $
- Volume of the solid of revolution for $f(x)=\sin x$
- Calculus problem
- Uniform convergence of functions
- Derivatives