How do you prove that when you expand a binomial like $(a+b)^n$ the coefficients can be calculated by going to the n row in Pascal's triangle?
So for instance, if you wanted to expand $(a+b)^n$ using Pascal's triangle you would use the formula $\sum_{k=0}^{n} \frac{n!}{k!(n-k)!}a^{n-k}b^k$ I understand why $\sum_{k=0}^{n} \frac{n!}{k!(n-k)!}$ gives you the n row of each entry in pascals triangle but how do you prove that Pascal's triangle is related to the coefficients of a binomial expansion in the frist place.
87
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
2.1K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2519 views
- $20.00
Related Questions
- Prove that ${n\choose 2}2^{n-2}=\sum\limits_{k=2}^{n}{n\choose k}{k\choose 2}$ for all $n\geq 2$
- Allocation of Price and Volume changes to a change in Rate
- Finding values of k for different points of intersection
- Let $R$ be an integral domain and $M$ a finitely generated $R$-module. Show that $rank(M/Tor(M))$=$rank(M)$
- Need Help with Piecewise Function and Graphing it
- Graph Equation from Test
- Set theory question
- Three questions on Vectors
Low bounty!
Is this a complicated question? What bounty do you recommend?
Thanks so much for that detailed explanation it means a lot. I was really struggling with that concept since I've been self-teaching myself and didn't have anyone to ask.
No problem! I am glad you liked it. That’s what this website is for :-) Ask your questions and get help :-)