Evaluate $\iint_S (x^2z+y^2 z) dS$
Evaluate
$$\iint_S (x^2z+y^2 z) dS$$
where $S$ the parto of the plane that lies inside the culender defined by $x^2+y^2=9$.
-
test comment
- closed
- 167 views
- $4.00
Related Questions
- Bivariate Normality questions
- Show that $\int_0^{\frac{\pi}{2}}\frac{ x}{ \tan x}dx=\frac{\pi}{2} \ln 2$
- Evaluate $\int \frac{x^5}{\sqrt{x^2+2}}dx$
- Evluate $\int_{|z|=3}\frac{1}{z^5(z^2+z+1)}\ dz$
- Find $\int\frac{dx}{2x^2-2x+1}$
- Evaluate $\int_C (2x^3-y^3)dx+(x^3+y^3)dy$, where $C$ is the unit circle.
- Prove that $\int_{-\infty}^{\infty}\frac{\cos ax}{x^4+1}dx=\frac{\pi}{2}e^{-\frac{a}{\sqrt{2}}}(\cos \frac{a}{\sqrt{2}}+\sin \frac{a}{\sqrt{2}} )$
- Integration with plancherels theorem